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ABSTRACTWe introdu
e an algorithm for mining expressive tempo-ral relationships from 
omplex data. Our algorithm, Apri-oriSetsAndSequen
es (ASAS), extends the Apriori algorithmto data sets in whi
h a single data instan
e may 
onsistof a 
ombination of attribute values that are nominal se-quen
es, time series, sets, and traditional relational values.Datasets of this type o

ur naturally in many domains in-
luding health 
are, �nan
ial analysis, 
omplex system diag-nosti
s, and domains in whi
h multi-sensors are used. Apri-oriSetsAndSequen
es identi�es prede�ned events of interestin the sequential data attributes. It then mines for asso
ia-tion rules that make expli
it all frequent temporal relation-ships among the o

urren
es of those events and relation-ships of those events and other data attributes. Our algo-rithm inherently handles di�erent levels of time granularityin the same data set. We have implemented AprioriSetsAnd-Sequen
es within the Weka environment and have applied itto 
omputer performan
e, sto
k market, and 
lini
al sleepdisorder data. We present here experimental results using�nan
ial data. We show that AprioriSetsAndSequen
es pro-du
es rules that express signi�
ant temporal relationshipsthat des
ribe patterns of behavior observed in the data set.
Categories and Subject DescriptorsH.2.8 [Database Appli
ations℄: Data mining; I.5.2 [DesignMethodology℄: Pattern analysis
General TermsAlgorithms, Performan
e
Keywordstemporal asso
iation rules, mining 
omplex data�
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1. INTRODUCTIONThis paper expands the general use of asso
iation rules[4℄ to 
omplex temporal relationships essential to many do-mains. Our asso
iation rule mining approa
h dis
overs pat-terns in data sets whose instan
es 
onsist of any 
ombinationof standard, set-valued, and sequential attributes. Thesedata sets o

ur naturally in several s
ienti�
, engineering,and business domains, and are generally ri
her than thetransa
tional, the relational, and the sequen
e data sets towhi
h asso
iation rule mining has been applied. To date,our mining approa
h has been applied to 
omputer systemperforman
e, sto
k market analysis [18℄, and 
lini
al sleepdisorder data [19℄. Complex system diagnosti
s, network in-trusion dete
tion, and medi
al monitoring are some relateddomains to whi
h this work 
an also be applied.A main motivation for mining these temporal rules from
omplex data 
omes from our previous experien
e workingon the performan
e analysis of a hardware and softwareba
kup/restore produ
t. The time it takes to 
omplete aba
kup 
an be of great importan
e. One of the most labor
onsuming tasks is to predi
t this time. A rule based expertsystem was built as a way to disseminate the performan
eknowledge used to predi
t ba
kup time. This expert systemqui
kly grew to in
lude over six hundred rules. The need forautomating the dis
overy of new rules was apparent.To 
reate a rule to handle a new feature or new te
hnol-ogy, an estimation is made about how performan
e will bea�e
ted. Tremendous amounts of information are 
olle
tedto verify that the estimation is a

urate. For a small s
e-nario in
luding a ba
kup server, a single 
lient, the Ethernetnetwork that 
onne
ts them, and a single SCSI 
onne
tedtape drive, an average of 2 MB of data 
an be 
olle
ted everyten minutes that a test is run. This in
ludes CPU and mem-ory usage for all pro
esses running on both server and 
lient,I/O metri
s for storage sub-systems and the tape drive andthe 
onne
tions between them and the 
lient and server ma-
hines as well as network traÆ
. With a short test run ofan hour, analyzing this amount of data manually is very im-pra
ti
al. The reasoning behind the initial estimation servesto fo
us analysis e�orts but is usually inadequate. It is oftenthe 
ase that the estimation is not suÆ
iently a

urate andmore analysis must be done to identify the fa
tors behindthe observed performan
e. This pro
ess 
an take weeks ormonths and often involves running new tests and 
olle
t-ing even more data to be analyzed. With our approa
h tomine asso
iation rules from these data, the resulting rules




an be used to fo
us analysis e�orts and possibly explainthe observed behavior.Figure 1 depi
ts a small sample of the type of 
omplexdata set that our mining approa
h applies to. In this 
om-puter performan
e data set, ea
h instan
e (row) 
orrespondsto a single test in whi
h a pro
ess was run until it 
om-pleted a task. The attributes des
ribe the 
onditions underwhi
h the test was run and state information 
olle
ted dur-ing the test in
luding \standard" attributes su
h as pro
es-sor speed and physi
al memory size; set-valued attributessu
h as the options or 
ags that were spe
i�ed to the pro-
ess and whi
h algorithms the pro
ess implemented; and se-quential attributes su
h as the CPU utilization per
entage,memory usage, and the total number of pro
esses runningover time. Other su
h numeri
 and nominal sequential at-tributes not shown in Figure 1 in
lude CPU usage of allother pro
esses, memory usage of all other pro
esses, I/Oa
tivity on main storage devi
es, memory paging, and pro-
ess state (running, exit normally, exit without output). Alltime sequen
e attributes in a single data instan
e share thesame time line.Events of interest in the sequential attributes in this dataset in
lude among others in
reases and de
reases in the uti-lization of a resour
e (CPU, memory), going above/below a
ertain usage threshold, and whether or not a pro
ess ter-minates normally.A sample interesting temporal pattern in this domain is:\Java pro
esses running a ma
hine learning algorithm thatare not given the -P option, that exhibit an in
rease in itsmemory usage, and that during this in
rease its memorypaging also in
reases tend to, with likelihood 82%, exit pre-maturely". This temporal pattern is 
aptured by our asso-
iation rule:
ag=-P-missing & pro
ess(java)-mem-usage-in
rease [t0,t2℄& pro
ess(java)-page-in
rease [t1,t2℄ )pro
ess(java)-exit-without-output [t3,t4℄, 
onf=82%.Here, t0; t1; t2; t3; and t4 are relative time indi
es that areused to express the relative order in whi
h these events areobserved.The algorithm presented here to mine these temporal re-lationships, AprioriSetsAndSequen
es, takes as input a 
om-plex temporal data set as des
ribed, a set of prede�ned eventtypes, and the standard Apriori minimum support and min-imum 
on�den
e parameters. An event type is a template ofa subsequen
e of interest in a time sequen
e attribute. Ourmining algorithm starts by identifying o

urren
es of theseevent types in the 
orresponding sequen
e attributes as de-s
ribed in Se
tion 2. Then, it generates all the frequent re-lationships among the temporal o

urren
es of these eventsand among these and the other non-temporal attributes.Se
tion 3 des
ribes the algorithm in detail. Sin
e there are13 ways of sorting just two events in time (before, after,overlaps, et
.) [7℄, and the number of possible orderings of aset of events grows exponentially with the number of eventsin the set, 
entral issues in the design and implementation ofour mining algorithm are the strategy used to prune unne
-essary orderings from 
onsideration, and the data stru
turesused to e�e
tively handle potentially frequent orderings ofevents. We des
ribe these in Se
tions 3 and 4. These se
-tions also des
ribe our extensions of the basi
 notions of sup-port and 
on�den
e needed to handle multiple o

urren
esof an event or a pattern in a 
omplex data instan
e. Se
-

tion 5 presents an evaluation of our mining algorithm in thesto
k market domain. Se
tion 7 summarizes the 
ontribu-tions of this paper and dis
usses future work investigatingalternative measures of item set interestingness and alterna-tive sear
h te
hniques for item set generation in the 
ontextof 
omplex data.
2. IDENTIFYING EVENTS IN SEQUENCES.Events of interests are available in multiple domains. Ex-amples of those are head & shoulders reversal and as
endingtriangle in sto
k market analysis [21℄, and in
rease in CPUutilization in the performan
e domain. An event 
an bedes
ribed by a Boolean 
ondition or by a template of theevent \shape". Su
h a template 
an be for example a 2{dimensional 
urve.Given a 
olle
tion of domain{spe
i�
 events of interest,we identify o

urren
es of those events in the sequential at-tributes. There are many methods available for mat
hingpatterns against a sequen
e. These in
lude similarity sear
husing Dis
rete Fourier Transform [3℄, bounding boxes for
lustering over a Fourier Transform feature spa
e [15℄, anddynami
 programming time warping [9℄.Work has also been done to dis
over 
ommon patterns intransa
tional sequen
es [28℄. These are all valid methodsfor spe
ifying and identifying events for AprioriSetsAndSe-quen
es.On
e the o

urren
es of an event of interest have beenidenti�ed in the values of a sequential attribute, they arestored in a new event set attribute. We de�ne an eventset attribute as an attribute whose values are sets of anevent type o

urren
es. As an example, 
onsider an eventattribute for the CPU time sequen
e attribute. The CPUtime sequen
e attribute is the per
entage of CPU usage inthe overall 
omputer system. This event attribute spe
i�eswhen the CPU usage in
reases. Assume that in a parti
ulardata set instan
e I, in
reases in CPU usage o

ur from time2 to 8, 13 to 19, and 35 to 47. Then, the I' value for thenew attribute CPU-In
rease is f [2,8℄, [13,19℄, [35,47℄ g.AprioriSetsAndSequen
es mines temporal asso
iations di-re
tly from events. This keeps inta
t the temporal informa-tion represented in the data set while eliminating mu
h ofthe work involved in s
anning the a
tual sequen
es duringmining. The events are akin to indexes into the sequen
es.
3. BASIC ASAS

Input. ASAS takes as input a data set 
onsisting of in-stan
es. Ea
h instan
e has a set of attributes. Attributes
an be of type nominal, set, and event set. An event set issimply a set whose elements are events. An event 
onsistsof three pie
es of information. First is the time sequen
eattribute in whi
h the event o

urred. Se
ond is the nameof the event. Third is the period of time during whi
h theevent o

urred. The time sequen
e attribute name and theevent name together de�ne the event item type.ASAS takes parameters that are similar to those a

eptedby regular Apriori. In addition to minimum support andminimum 
on�den
e is the maximum number of event itemsof the same type allowed in a rule.



ID 
ags CPU % CPU (MHz) memory % memory (kB) algorithms1 f-R, -Hg 600 523760 fneural net, ba
k-propagationg2 f-Hg 40, 52, 67, 80, : : : 600 10, 26, 46, 69, 86, : : : 523760 fC4.5g3 f-U, -Rg 10, 39, 87, 96, : : : 300 19, 50, 82, 80, 70 : : : 260592 fnaive bayesg: : : : : : : : : : : : : : : : : : : : :Figure 1: A sample of a data set 
ontaining 
omplex instan
es. Here, sequential values are represented in agraphi
al manner only for the �rst row to save spa
e.
Internal Representation of Items.The attribute value for-mat of the data set is 
ommon among data mining tools. Inorder to mine asso
iation rules from this data it is translatedinto an item representation. Ea
h possible attribute valuepair that exists in the data set is de�ned as an item andgiven an integer number 
alled the item number. In ASASthere are two kinds of items. Regular items are formed fromattribute value pairs where the value is not a sequen
e or anevent set. The regular items are uniquely identi�ed by theirinteger number. Event items are formed from attributeswhose values are event sets. While event items are given anitem number it is still ne
essary to interpret the item's valueduring the asso
iation rule mining pro
ess.
Handling Set Attributes.We use the extension of the Apri-ori algorithm to mine asso
iation rules from set valued datades
ribed in [27℄. This extension was added to the Wekasystem.
Handling Event Attributes.Event items are interpretedrather than being treated as a literal. That is the value ofan event item has meaning during the mining pro
ess. Forinstan
e, we are not interested in the o

urren
e of a CPU-In
rease event at absolute time [13; 18℄, but rather on thefa
t that this event o

urred in a relative temporal positionwith respe
t to other events. For this purpose, ASAS usesa relative time line. The relative time line is denoted byt0; t1; t2; : : :. There are no units implied. Ea
h point onthe relative time line 
orresponds to the begin times or endtimes of one or more events in the item set.When an event is added to an item set the item set'srelative time line must be updated. Let's add the eventMemory Sustain with real times [2,35℄ to the item set shownbelow. Both the real time and relative times for the eventsin the item set are shown.real times: fDisk In
rease [5,25℄, CPU In
rease [10,40℄grelative times:fDisk In
rease [t0,t2℄, CPU In
rease [t1,t3℄g+ Memory Sustain [2,35℄ =relative times:fDisk In
rease [t1,t3℄, CPU In
rease [t2,t5℄, MemorySustain [t0,t4℄gAs you 
an see simply sorting the real time values andnumbering them starting from 0 yields the relative times.
Level 1 Candidate Generation.In Apriori the �rst levelof 
andidate item sets is generated by simply 
reating an

item set of size one for ea
h of the items appearing in thedata set. These item sets are added to a list of 
andidateitem sets. This basi
 pro
ess is used in ASAS.Regular items are treated the same. A 
andidate itemset is not generated for ea
h event item. Event items havea type, usually a name that 
ombines the original time se-quen
e attribute name and the event dete
ted in the se-quen
e. There are usually multiple event items of a singletype in a data set. Ea
h event item may have a unique beginand end time. If a 
andidate item set were 
reated with theseevent items with unique begin and end times they would betoo spe
i�
 and a frequent item set 
ontaining them wouldnot likely be found. Instead, a representative event item forea
h event type is 
reated. This new item is added to a
andidate item set.
Level 1 Counting Support.The support of an item setis the per
entage of instan
es in the data set that 
ontainthe item set. The weight of an item set is the number of in-stan
es that 
ontain it. The weight of an item set is 
ountedand then used to 
al
ulate support.In Apriori determining if an item set is in
luded in aninstan
e is a straight forward pro
edure. The list of itemsin the item set is 
ompared to the list of items in ea
h dataset instan
e. If all items in the item set are found in theinstan
e that instan
e 
ounts towards the weight of the itemset.For regular items the Apriori algorithm remains the same.Event items require spe
ial attention. During the 
ountingof support the value, that is the name of the event and thetime during whi
h it o

urs, must be evaluated instead ofrelying solely on the integer representation used by Apriori.Determining if an item set is in
luded in a data set in-stan
e in ASAS is not as straightforward. In an instan
ethere may be many event items of one type. The event itemsin the instan
e that mat
h the event items in the item setmust be 
hosen so the temporal relationships between themare the same. When an item set 
ontaining event items isin
luded in an instan
e their exists a mapping between themat
hing event items from the item set to the instan
e.Mapping event items is trivial when the item set 
ontainsa single event item. This is be
ause the relative begin andend times are always t0 and t1, respe
tively. As long as theinstan
e 
ontains an event item of the same type a mappingis guaranteed. This is the 
ase for all item sets of size one
ontaining one event item.



Level 2 Candidate Generation.In Apriori, 
andidate itemsets of size two are generated by 
ombining ea
h pair of fre-quent item sets of size one. Combining item sets of size oneis a simple matter sin
e ea
h pair results in a valid 
andi-date. The same is true for ASAS. The di�eren
e is that forea
h pair of event items there exists thirteen di�erent itemsets that represent the di�erent temporal relationships [7℄those two event items 
an have together.
Level 2 (and up) Counting Support.First, the instan
emust 
ontain all the regular items in the item set. If theyare all present, in
lusion of the event items are 
he
ked. Ifthe item set 
ontains only one event item the 
he
king istrivial as des
ribed above in Level 1 Counting Support. Ifthe one event item is found, the weight of the item set isin
remented.If the 
andidate item set 
ontains two event items (or morein subsequent levels) then a mapping must be made fromevent items in the item set and event items in the instan
e.The relative begin and end times of event items in an itemset and an instan
e are stored for qui
k referen
e in an array.Ea
h index of the array represents that relative time alongthe time line. In ea
h array 
ell is a list of begin and endlabels for ea
h event with that 
orresponding begin and endtime. A mapping between relative times in the item setand in the instan
e represents a partial possible mappingbetween the begin and end labels of the event items, andhen
e a mapping between the event items themselves.A mapping is made between an item set's relative timesand an instan
e's real times by starting at time t0 on theitem set's time line. Starting at t=0 in the instan
e, the ear-liest time index 
ontaining a list of begin labels for the sametype of events as those in the item set is found. On
e this
orresponding time index is found it is noted as a possiblemap for that relative time in the item set. The remainingtime indexes in the item set are mapped in the same way,always starting at the next relative time in the instan
e.On
e a possible map is 
reated it is tested using the endtime labels. Begin and end time labels are paired together,belonging to a single event item in the item set. The 
orre-sponding begin and end labels in the instan
e must belongto a single event item as well. Furthermore, an event itemin the instan
e 
an only be mapped to a single event itemin the item set as the begin and end labels must.On
e the map is validated the weight of the item set is in-
remented. If the map is found to be invalid the last relativetime used in the instan
e is skipped and another possiblemap of relative times is 
reated and tested. This 
ontin-ues until there are no more relative times left to try in theinstan
e.
Level 3 (and up) Candidate Generation.At the thirdlevel of Apriori's 
andidate item set generation, generatingpossible frequent item sets of size 3, there are ways to elim-inate some of the 
andidates before 
ounting support. Theitems in an item set are sorted in as
ending order a

ordingto their item number. To 
ombine two item sets to form anew item set one size larger there are a list of 
onditions thatmust be met. They must have the same number of items.The list of items in both item sets must be the same ex
eptfor the last item whi
h must be di�erent. Furthermore, thelast item in the se
ond item set must have a higher itemnumber than the last item in the �rst item set. If two item

sets do not meet these 
riteria they are not 
ombined to gen-erate a 
andidate item set. The 
andidate item set formedby 
ombining two item sets simply has the superset of theitems in ea
h. This is easily done by adding the last item ofthe se
ond item set to the �rst item set.Combining item sets has been modi�ed for ASAS. All ofthe 
onditions still hold for regular items. The event itemshave to be handled as a spe
ial 
ase. Sin
e there is thepossibility of there being more than one temporal relation-ship between the same set of event items the item numberalone 
annot be used to de
ide if two item sets should notbe joined. Rather, a mapping must exist from all the eventitems in the �rst item set to all the event items in the se
onditem set. This ex
ludes event items that are the last item inan item set. On
e this mapping is found the item sets 
anbe 
ombined.As for level two 
andidate generation, it is possible formore than one 
andidate item set to be generated for ea
hpair of frequent item sets that are 
ombined. The algorithmfor generating these possibilities is more involved than thestraight forward iteration of thirteen possible temporal re-lationships. When more than two event items are presentthe number of temporal 
ombinations grows. This numberis limited during 
andidate generation by using the relativetemporal information 
ontained in ea
h item set.A: f Disk In
rease [t0,t2℄, CPU In
rease [t1,t3℄ gB: f Disk In
rease [t1,t2℄, Memory Sustain [t0,t3℄ gConsider 
ombining the item sets A and B shown above.These 
an be 
ombined sin
e they have the same number ofitems, a mapping exists between the Disk In
rease event initem set A and the Disk In
rease event in item set B, andthe event items listed last in A and B are di�erent. Thetemporal relationship between the CPU In
rease event in Aand the Memory Sustain event in B is not known. Someof the possible relationships 
an be eliminated by inferringinformation from the fa
t that the Disk In
rease event inboth A and B is the same event.Combining the two item sets is done by adding the lastitem from the �rst item set to the se
ond item set. In thisexample the event item Memory Sustain will be added toitem set A. First, the begin time of Memory Sustain eventto be added to item set A must be determined. In item setB the Memory Sustain event began before the Disk In
reaseevent began. This temporal relationship must hold for theitem sets being generated. In the item set A there is nothingbefore the begin time of Disk In
rease. Therefore the onlyrelative time Memory Sustain 
an begin is one time linevalue before time 0.Next the end time of the Memory Sustain event must bedetermined. From item set B it 
an be seen that the Disk In-
rease event ended before the Memory Sustain event ended.This means that ea
h relative time in the item set A thato

urs after the end of the Disk In
rease event is potentiallywhen the end of the Memory Sustain event o

urs. This in-
ludes the times noted in the time line for A and ea
h timein between those marked times.The possible begin and end time pairs determined are inrelation to item set A's existing relative time line. A 
andi-date item set is generated for ea
h pair. In these 
andidateitem sets the relative time line will be renumbered startingfrom 0 to in
lude the Memory Sustain event.



fDisk In
rease [t1,t3℄, CPU In
rease [t2,t5℄, MemorySustain [t0,t4℄gfDisk In
rease [t1,t3℄, CPU In
rease [t2,t4℄, MemorySustain [t0,t4℄gfDisk In
rease [t1,t3℄, CPU In
rease [t2,t4℄, MemorySustain [t0,t5℄gBy inferring temporal relationships from the event itemsin 
ommon between the item sets that are being 
ombinedmany 
andidate item sets representing di�erent temporal re-lationships 
an be eliminated. An important observation tomake is that this reasoning is only ne
essary when ea
h itemset has more than one event item. If ea
h item set 
ontainsexa
tly one event item ea
h the generation of 
andidates fol-lows the pro
edure des
ribed in Se
tion 3 Level 2 CandidateGeneration.
Algorithm1: given a data set of instan
es DS, and minimum weightminW2: for all regular items i in DS do3: 
reate 
andidate item set 
 of size k = 14: add i to 
 and add 
 to 
andidate list C5: end for6: for all event items e in data set do7: if event type of e not present in event type list ETthen8: 
reate 
andidate item set 
 of size k = 19: 
reate a new event item ei with event type of e andbegin time = 0 and end time = 110: add ei to 
, add 
 to C, and add e to ET11: end if12: end for13: for all instan
es I in DS do14: for all 
 in C do15: if I 
ontains the item in 
 then16: in
rement weight of 
17: end if18: end for19: end for20: for all 
 in C do21: if weight of 
 � minW then22: add 
 to frequent item sets of size k list23: end if24: end for25: remove all from C26: while frequent item set of size k list is not empty do27: k++28: for all pairs of item sets f1 and f2 in the frequentitem sets of size k-1 list do29: if f1 and f2 
ontain event items then30: generate 13 
andidates, 1 for ea
h possible tem-poral relationship between the event items f1 andf2 do not have in 
ommon31: else32: generate 1 
andidate by 
ombining f1 and f233: end if34: add generated 
andidate(s) to C35: end for36: for all instan
es I in DS do37: for all 
 in C do38: if all regular items i in 
 are in
luded in I then

39: if mapping exists between all event items eiin 
 to event items in I su
h that all temporalrelationships are the same then40: in
rement weight of 
41: end if42: end if43: end for44: end for45: for all 
 in C do46: if weight of 
 � minW then47: add 
 to frequent item sets of size k list48: end if49: end for50: remove all from C51: end while
4. ASAS DETAILSSome details of ASAS were left out of the basi
 algorithmexplantation for 
larity. Here are some important details,enhan
ement features and performan
e improvements overthe algorithm presented in Se
tion 3.
Multiple Events Of The Same Type.The items in the
andidate item sets of size one generated in the �rst levelof ASAS (see Se
tion 3) are the only items that will appearin the frequent item sets and asso
iation rules generatedfrom them. If multiple event items of the same type areto appear in a rule they must be present in the �rst levelof 
andidate item sets. This requirement 
hanges the Basi
ASAS algorithm des
ribed in Se
tion 3. Instead of 
reatingone event item for ea
h event type multiple event items ofthe same type are 
reated.Instead of just: item # 1. Memory Sustain [t0,t1℄we 
reate:item # 1. Memory Sustain [t0,t1℄item # 2. Memory Sustain [t0,t1℄so that later when item sets 
ontaining items 1 and 2 are
ombined we 
an get:Memory Sustain [t0,t1℄, Memory Sustain [t2,t3℄Memory Sustain [t0,t2℄, Memory Sustain [t1,t3℄: : :The number of event items of ea
h event type are 
ounted.For ea
h event type a number of new event items are 
reated.This number is the maximum number of event items of thesame type spe
i�ed by the user or the number of event itemsfound in the data set of that type, whi
hever is smaller.The more event items of the same type allowed, the moreevent items there are to 
ount support for and use to gener-ate new 
andidate item sets. The higher the maximum is setthe more work there is to mine impa
ting performan
e neg-atively. The higher the maximum is set the more potentiallyexpressive the rules found 
ould be.
Duplicate Item Sets.To mitigate the work imposed by en-abling the dis
overy of rules 
ontaining multiple events of thesame type, ASAS modi�es how support is 
ounted. Insteadof one list of 
andidate item sets there are two. The 
ount{
andidates list holds the item sets that will be 
ounted in thedata set. The all{
andidates list holds all item sets in
ludingthose that do not have to be 
ounted.An item set is 
onsidered a dupli
ate of another when both
ontain the same regular items and ea
h event item has a




orresponding event item of the same type with the samebegin and end times. It is trivial to identify these dupli
ateitem sets when generating 
andidates of size one. When adupli
ate item set is generated it is not added to the 
ount{
andidates list. It gets added to the all{
andidates list. Ahash table stores the map of dupli
ate item sets in the all{
andidates list to item sets in the 
ount{
andidates list.Only the item sets in the 
ount{
andidates list are 
om-pared to the instan
es in the data set. After the support
ounting pro
ess is done the dupli
ate item sets in all{
andidatesare assigned the weight of their 
orresponding item set in the
ount{
andidates list.
Calculating Confidence.Traditionally 
on�den
e is de-�ned for a rule A ) B as the per
entage of instan
es that
ontain A that also 
ontain B. This is usually 
al
ulated asS(AB) / S(A), where S is support.Take a data set that has one time sequen
e; <a,b,a,a,a,a>.Consider a rule A ) B where both A and B 
ontain oneevent item ea
h, a[t0,t1℄ and b[t2,t3℄ respe
tively. The eventitem a begins at time 0 and ends at time 1. The event itemb begins at time 2 and ends at time 3. Sin
e there is oneinstan
e in our data set and it 
ontains the item set fA, Bgas des
ribed, the support of the item sets fAg, fBg, and fA,Bg are 1. If support was used to 
al
ulate the 
on�den
e ofthe rule A) B it would be 1. This implies that in the dataset from whi
h the rule was mined that 100 % of the timea appears, b follows. Looking at the time sequen
e, only 20per
ent of the time is a followed by b.Let's use event weight to de�ne 
on�den
e. Event weightis a 
ount of how many times the events in an item setappear in all the instan
es in whi
h the item set has beenfound. It is possible that the pattern des
ribed by an itemset's events o

ur multiple times inside a single instan
e.Con�den
e of a rule 
ontaining event items in both theante
edent and 
onsequent of the rule is de�ned here asEW(A)B) / EW(A), where EW is event weight and EW(A)B)is the number of o

urren
es of A whi
h 
an be extended tofA, Bg. The event weight of the item set fAg is 5. Of those5 only 1 
an be extended to fA, Bg. The 
on�den
e forA ) B is 0.2, or 20 per
ent. Clearly this more a

uratelyrepresents the data set.Sin
e event weight is 
ounted in relation to the ante
edentof a rule being extended to en
ompass the 
onsequent of arule, the event weight 
ounting is done during rule genera-tion and not frequent item set mining.
5. EMPIRICAL EVALUATION

Stock Market Data.The data used 
onsists of ten yearsworth of 
losing pri
es from 7 te
hnology 
ompanies from1992 to 2002 obtained from Yahoo! Finan
e. Additionally,events su
h as new produ
t releases, awards re
eived, neg-ative press releases, and expansions or mergers from ea
h
ompany were obtained from ea
h respe
tive 
ompany's website. Ea
h instan
e in this data set represents a single quar-ter year. There are 24 instan
es in the data set. All 10 yearsare not represented be
ause information on the additionalevents listed above were not available for all years.Before mining, the sequen
es of 
losing pri
es for a quarterfor ea
h 
ompany are �ltered for events. For ea
h prede�nedevent and 
losing pri
e sequen
e, a new attribute is 
reated

indexing where this event type o

urs in the sequen
e. The
losing pri
e sequen
e attributes are then removed from thedata set. The �nan
ial events dete
ted in
lude rounded top,selling 
limax, as
ending triangle, broadening top, des
end-ing triangle, double bottom, double top, head & shoulders,inverse head & shoulders, pani
 reversal, rounded bottom,triple bottom, triple top, sustain, in
rease, and de
rease [21℄.This data was 
ompiled by [18℄.
5.1 RulesThe asso
iations rules presented here are in the form A) B, where A and B are ea
h a set of items. Further-more, events are annotated with their begin (t1), and end(t2) times as su
h: [t1,t2℄. This is followed by the 
on�-den
e, support, and event weight of the rule. The minimumand maximum possible length of ea
h event type appearingin the rule is spe
i�ed. These rules were obtained by ap-plying AprioriSetsAndSequen
es to the data set des
ribedin Se
tion 5. Let's look at a fairly simple rule 
ontainingevents.CSCO In
rease [t0,t1℄ ) CSCO Sustain [t2,t3℄[Conf: 0.8, Sup: 0.42, Event Weight: 16℄CSCO In
rease 6-11 days, CSCO Sustain 6-11 daysThis rule reads: The 
losing sto
k pri
e of Cis
o SystemsIn
 in
reased in value for 6 to 11 days. With a 
on�den
eof 80% the 
losing pri
e of Cis
o will remain fairly 
onstantfor 6 to 11 days sometime after Cis
o's 
losing pri
e stopsin
reasing. It will do this during the same quarter year thein
rease took pla
e. There is no overlap in time between thetwo events of this rule. With a support of about 42% thishappens in about 10 of the quarters represented in the dataset. In these 10 instan
es this behavior is found 16 times asnoted by the event weight. Let's look at a rule similar tothe one des
ribed above.NXTL Selling Climax [t0,t1℄ ) NXTL Sustain [t2,t3℄[Conf: 0.8, Sup: 0.67, Event Weight: 24℄NXTL Selling Climax 6-12 days, NXTL Sustain 6-12 daysHere the 
ompany of interest is Nextel Communi
ationsIn
. The relationship between the events are the same. Thesupport is higher with this rule being found in 16 quarters.In the 16 instan
es representing those quarters this rule isfound 24 times. This rule and the previous one are examplesof predi
ting future values in a single sequen
e. This is justone form of the rules ASAS 
an �nd.Diagnosti
 rules 
on
erned with a single sequen
e 
an alsobe found. Rather than predi
ting an event to begin or endafter the events in the ante
edent, a diagnosti
 rule des
ribesan asso
iation of events beginning or ending before thosein the ante
edent. This in
ludes events in the 
onsequentwhi
h o

ur between or during events in the ante
edent.INTC In
rease [t2,t3℄ ) INTC Selling Climax [t0,t1℄[Conf: 0.87, Sup: 0.46, Event Weight: 13℄INTC In
rease 6-8 days, INTC Selling Climax 6-13 daysIntel Corporation's 
losing sto
k pri
e in
reases for 6 to8 days. Before Intel's sto
k pri
e in
reases it goes througha selling 
limax that lasts 6 to 13 days during the samequarter. Let's look at a pair of rules. These have the sameevents in them but one has a predi
tive form and the otherhas a diagnosti
 form.



CSCO Expand Merge [t4,t5℄& AMD As
ending Triangle [t0,t1℄ ) SUNW Sustain [t2,t3℄[Conf: 0.91, Sup: 0.42, Event Weight: 10℄AMD As
ending Triangle [t0,t1℄ & SUNW Sustain [t2,t3℄) CSCO Expand Merge [t4,t5℄[Conf: 1.0, Sup: 0.42, Event Weight: 11℄CSCO Expand Merge 1-7 days,AMD As
ending Triangle 6-30 days, SUNW Sustain 6-13daysAdvan
ed Mi
ro Devi
es In
's 
losing sto
k pri
es exhibitsa pattern known as an as
ending triangle for 6 to 30 days.Sometime after but during the same quarter Sun Mi
rosys-tems In
's 
losing sto
k pri
e remains fairly 
onstant for 6to 13 days. Sometime after in the same quarter Cis
o goesthrough a period of expansion or merger for 1 to 7 days.The predi
tive form of the rule has a 100% 
on�den
e. Inany quarter in the data set, every time AMD and Sun ex-hibit the behaviors des
ribed in these rules, Cis
o expandsor merges.This example shows rules where events identi�ed in dif-ferent numeri
 sequen
es and symboli
 events are related intime. The temporal relationships e�e
t the 
on�den
e of therules, even when they have the same events. This examplealso shows ASAS 
an �nd diagnosti
 forms of asso
iationrules. AMD Sustain [t0,t2℄ & INTC Sustain [t1,t3℄) MSFT Sustain [t4,t5℄[Conf: 0.78, Sup: 0.42, Event Weight: 7℄AMD Sustain 6-9 days, INTC Sustain 6-10 days,MSFT Sustain 6-13 daysAMD's 
losing sto
k pri
e remains fairly 
onstant for 6 to9 days. During this 6 to 9 days interval Intel Corporation's
losing sto
k pri
e begins to remain fairly 
onstant. Intel'ssustain period last for 6 to 10 days. During this 6 to 10 dayperiod AMD's sustain ends. Sometime after Intel's sustainperiod ends but in the same quarter year, Mi
rosoft Corpo-ration's 
losing sto
k pri
e remains fairly 
onstant for 6 to13 days.Events overlapping in time make the temporal relation-ships between events more pre
ise and may make it moreinteresting. These rules 
an be found by ASAS in predi
tiveand diagnosti
 forms.An interesting 
hara
teristi
 of some of the rules found inour dataset with overlapping events was that they des
ribedthe events themselves in terms of other events. A 
ompany's
losing sto
k pri
e 
ould exhibit a 
ompli
ated behavior likea selling 
limax. A portion of this 
ompli
ated behaviormay be similar to a mu
h simpler behavior su
h as a sustainin sto
k 
losing pri
e. ASAS 
an �nd rules that state asustain event and selling 
limax event 
an overlap in thesame sequen
e as illustrated in the rule below.AMD Selling Climax [t0,t2℄ ) AMD Sustain [t1,t3℄[Conf: 0.61, Sup: 0.42, Event Weight: 14℄AMD Selling Climax 6-15 days, AMD Sustain 6-9 daysParts of 
ompli
ated events 
an also be found similar.SUNW Inverse Head & Shoulders [t1,t3℄) SUNW Des
ending Triangle [t0,t2℄

[Conf: 0.71, Sup: 0.42, Event Weight: 12℄SUNW Inverse Head & Shoulders 6-14 days, SUNWDes
ending Triangle 6-24 days
5.1.1 Multiple Occurrences of Event TypeAprioriSetsAndSequen
es algorithm allows rules to be found
ontaining multiple o

urren
es of events with the sametype. CSCO Sustain [t0,t1℄ ) CSCO Sustain [t2,t3℄[Conf: 0.81, Sup: 0.54, Event Weight: 38℄CSCO Sustain 6-11 daysCis
o's 
losing sto
k pri
e remains fairly 
onstant for 6to 11 days. With a 
on�den
e of 81% we 
an say laterin the same quarter Cis
o's value will experien
e another6 to 11 days period of sustain. It is interesting to 
omparerules whi
h predi
t the same repeating patterns for di�erent
ompanies. Below are the 
on�den
e, support and eventweight for repeating sustain rules of the noted 
ompanies.SUNW [Conf: 0.87, Sup: 0.58, Event Weight: 39℄MSFT [Conf: 0.86, Sup: 0.63, Event Weight: 36℄NXTL [Conf: 0.83, Sup: 0.63, Event Weight: 40℄AMD [Conf: 0.81, Sup: 0.54, Event Weight: 35℄Let's 
ompare two rules in whi
h one an event repeatstwi
e and the other the same event repeats three times.INTC Sustain [t0,t1℄ ) INTC Sustain [t2,t3℄[Conf: 0.92, Sup: 0.63, Event Weight: 44℄INTC Sustain [t0,t1℄ )INTC Sustain [t2,t3℄ & INTC Sustain [t4,t5℄[Conf: 0.71, Sup: 0.42, Event Weight: 34℄INTC Sustain 6-10 daysNoti
e the redu
ed 
on�den
e in predi
ting Intel's sto
kpri
e will undergo a sustain period twi
e more in the samequarter. Repeating events also o

ur in events that were notobtained from a sequen
e. The rule below shows a repeatingCis
o Expand Merge event.CSCO Expand Merge [t0,t1℄) CSCO Expand Merge [t2,t3℄[Conf: 0.9, Sup: 0.46, Event Weight: 36℄CSCO Expand Merge 1-7 daysRules with repeating events are not limited to just onetype of event. Below is an example of a rule 
ontainingboth a singular event and a repeating event.CSCO Expand Merge [t4,t5℄ & NXTL Sustain [t0,t1℄) NXTL Sustain [t2,t3℄[Conf: 0.92, Sup: 0.42, Event Weight: 24℄NXTL Sustain [t2,t3℄ & NXTL Sustain [t0,t1℄) CSCO Expand Merge [t4,t5℄[Conf: 0.67, Sup: 0.42, Event Weight: 16℄CSCO Expand Merge 1-7 days, NXTL Sustain 6-12 daysAs shown above rules with repeating events 
an be foundin predi
tive and diagnosti
 forms.



5.2 ASAS PerformanceFigure 2 shows the se
onds used to mine rules per frequentitem set found and other metri
s for slightly di�ering datasets from the sto
k market domain. The total time it takesto mine appears to be insensitive to the number of eventattributes, the number of event o

urren
es, and the averagelength of the time line. It seems only the number of frequentitem sets found in a data set greatly in
reases mining time.The time spent �nding ea
h frequent item set seems relatedto the number of event o

urren
es and the number of eventattributes in the data set.

Figure 2: Various Metri
sFigure 3 shows the results of varying the maximum num-ber of events with the same type that 
an appear in a rule.This was done with a support setting of 49%. 16 rules 
on-taining 2 events of the same type were found. Beyond amaximum of 2 more time is spent per frequent item set withno additional rules found to justify the 
ost. The lower theper
entage of new rules found by in
reasing the maximumnumber of events of the same type allowed, the more timeper frequent item set will be spent during mining. Figure 4shows results using a support of 40%. This tradeo� is easilyseen. Even though more rules are found due to the lowersupport, more time is spent per frequent item set.
6. RELATED WORKThere has been a great deal of interest in devising ap-proa
hes to mine asso
iations from sequential data. Theseapproa
hes 
an be roughly divided into two groups. The�rst group 
ontains approa
hes that extend the Apriori al-gorithm to sequen
es. These approa
hes assume data in-stan
es that are sequen
es of 
ommer
ial transa
tions. A
ommer
ial transa
tion is 
alled an event . These approa
hesmine frequent patterns from those data instan
es. Amongothers, the work by Srikant and Agrawal [6℄ and by Zaki[33℄ and 
ollaborators belong to this group. They use thenotions of time window and max/min gaps to address the
omplexity of the mining task. Zaki [33℄ 
onsiders item set
onstraints for this same purpose. One di�eren
e betweenour work and the approa
hes in this group is that our no-tion of event is a non{trivial time interval and theirs is a

Figure 3: 49 Per
ent Support

Figure 4: 40 Per
ent Supportpoint in time (instantaneous events). This has a profoundimpa
t on the expressiveness of our asso
iation rules andon the 
omplexity of the mining pro
ess, as in our 
ase thepossible orderings of two single events is 13 while for themthat number of orderings in only 3. Another important dif-feren
e is that in our approa
h we 
onsider data instan
esthat are 
ombinations of several attribute types, while theirinstan
es are sequen
es of transa
tions.The se
ond group of asso
iation rule mining approa
hesto sequential mining in
ludes the work by Mannila et al.[24, 23, 13℄. They 
onsider episodes of events, where eventsare on
e again points in time. Episodes are 
olle
tions ofpartially ordered events that o

ur 
lose to ea
h other intime. This 
onstraint addresses the 
omplexity of the sear
hin a way similar to the time window approa
h des
ribedabove. Our work extends theirs by allowing events thatare time intervals. This enhan
es the 
olle
tion of partialorders that are appli
able to a set of events and thus the



expressiveness of the mined patterns.Roddi
k and Spiliopoulou [26℄ provide an ex
ellent surveyof temporal knowledge dis
overy. Rainsford and Roddi
k[25℄ report e�orts on extending asso
iation rules with tem-poral information. Their work is similar to ours in that theyalso 
onsider the 13 possible ways in whi
h two temporalevents 
an be ordered in time. However, the expressivenessof their asso
iation rules is very restri
ted in 
omparisonwith ours. Bettini et al. [10℄ des
ribe an approa
h to minetemporal asso
iations that allows the user to de�ne a ruletemplate, and their algorithm �nds valid instantiations ofthe rule template in the data set. Our approa
h is moregeneral than theirs in that the user is not restri
ted to usejust one temporal template for ea
h mining task, as our al-gorithm 
onsiders all possible temporal patterns that arefrequent. Also, we 
an explore several time{granularitiesduring the same mining task, just by de�ning an event{based attribute for ea
h relevant time{granularity and let-ting them \interse
t" with other events of interest. Theevents in these time{granularity attributes would simply de-�ne intervals of the time granularity it represents. For areal time line whose units are days the time{granularity at-tribute for weeks would identify an event for every sevendays along the real time line. Other approa
hes that em-ploy user{de�ned temporal templates are those des
ribedby Han and 
ollaborators [29, 22℄. Their multidimensionalintertransa
tion asso
iation rules are parti
ular 
ases of our
omplex temporal asso
iation rules.
7. CONCLUSIONS AND FUTURE WORKWe introdu
e an algorithm for mining expressive temporalrelationships from 
omplex data sets in whi
h a single datainstan
e may 
onsist of a 
ombination of attribute valuesthat are nominal sequen
es, time series, sets, and traditionalrelational values. Our mining algorithm is 
lose in spiritto the two-stage Apriori algorithm. Our work 
ontributesthe the investigation of prune strategies and eÆ
ient datastru
tures to e�e
tively handle the added data 
omplexityand the added expressiveness of the temporal patterns.Several alternative methods to Apriori's item set genera-tion have been proposed in the literature. Those alternativemethods di�er from Apriori in their strategy to generatefrequent item sets, or in the item sets that they 
onsiderinteresting. Some approa
hes attempt to in
rease the per-forman
e of the mining algorithm over 
ertain types of data[35℄; 
ompute frequent item sets very eÆ
iently [16, 32, 20,17℄; or utilize parallel 
omputing environments [5, 34℄. Workby Webb [30℄, Agarwal, Aggarwal, and Prasad [1, 2℄, andBayardo, Agrawal, and Gunopoulos [8℄ address some of theeÆ
ien
y 
on
erns by means of novel and judi
ious sear
hte
hniques for item set generation. Modi�
ations and gen-eralizations of asso
iation rules that are more suitable to
ertain appli
ation domains are investigated by Brin, Mot-wani, and Silverstein [11℄ and by Cohen et al. [12℄. Addi-tional work on using statisti
al measures of item set inter-estingness other than support and lift are investigated byDuMou
hel and Pregibon [14℄ and by Wu, Barbar�a and Ye[31℄.In this paper we fo
us on the ne
essary extensions of thetraditional support and 
on�den
e framework to handle thedesired 
omplex asso
iations. Zhen, Kohavi, and Mason [36℄show experimentally that although some well{known alter-native asso
iation rule mining approa
hes dis
ussed above

outperform Apriori over arti�
ial data sets, they do not overreal-world data sets. The work des
ribed here provides afoundation for future investigation and 
omparison of alter-native measures of item set interestingness and alternativesear
h te
hniques su
h as those dis
ussed above but in the
ontext of 
omplex data.
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