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ABSTRACT

We introduce an algorithm for mining expressive tempo-
ral relationships from complex data. Our algorithm, Apri-
oriSetsAndSequences (ASAS), extends the Apriori algorithm
to data sets in which a single data instance may consist
of a combination of attribute values that are nominal se-
quences, time series, sets, and traditional relational values.
Datasets of this type occur naturally in many domains in-
cluding health care, financial analysis, complex system diag-
nostics, and domains in which multi-sensors are used. Apri-
oriSetsAndSequences identifies predefined events of interest
in the sequential data attributes. It then mines for associa-
tion rules that make explicit all frequent temporal relation-
ships among the occurrences of those events and relation-
ships of those events and other data attributes. Our algo-
rithm inherently handles different levels of time granularity
in the same data set. We have implemented AprioriSetsAnd-
Sequences within the Weka environment and have applied it
to computer performance, stock market, and clinical sleep
disorder data. We present here experimental results using
financial data. We show that AprioriSetsAndSequences pro-
duces rules that express significant temporal relationships
that describe patterns of behavior observed in the data set.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining; [.5.2 [Design

Methodology]: Pattern analysis
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1. INTRODUCTION

This paper expands the general use of association rules
[4] to complex temporal relationships essential to many do-
mains. Our association rule mining approach discovers pat-
terns in data sets whose instances consist of any combination
of standard, set-valued, and sequential attributes. These
data sets occur naturally in several scientific, engineering,
and business domains, and are generally richer than the
transactional, the relational, and the sequence data sets to
which association rule mining has been applied. To date,
our mining approach has been applied to computer system
performance, stock market analysis [18], and clinical sleep
disorder data [19]. Complex system diagnostics, network in-
trusion detection, and medical monitoring are some related
domains to which this work can also be applied.

A main motivation for mining these temporal rules from
complex data comes from our previous experience working
on the performance analysis of a hardware and software
backup/restore product. The time it takes to complete a
backup can be of great importance. One of the most labor
consuming tasks is to predict this time. A rule based expert
system was built as a way to disseminate the performance
knowledge used to predict backup time. This expert system
quickly grew to include over six hundred rules. The need for
automating the discovery of new rules was apparent.

To create a rule to handle a new feature or new technol-
ogy, an estimation is made about how performance will be
affected. Tremendous amounts of information are collected
to verify that the estimation is accurate. For a small sce-
nario including a backup server, a single client, the Ethernet
network that connects them, and a single SCSI connected
tape drive, an average of 2 MB of data can be collected every
ten minutes that a test is run. This includes CPU and mem-
ory usage for all processes running on both server and client,
I/0O metrics for storage sub-systems and the tape drive and
the connections between them and the client and server ma-
chines as well as network traffic. With a short test run of
an hour, analyzing this amount of data manually is very im-
practical. The reasoning behind the initial estimation serves
to focus analysis efforts but is usually inadequate. It is often
the case that the estimation is not sufficiently accurate and
more analysis must be done to identify the factors behind
the observed performance. This process can take weeks or
months and often involves running new tests and collect-
ing even more data to be analyzed. With our approach to
mine association rules from these data, the resulting rules



can be used to focus analysis efforts and possibly explain
the observed behavior.

Figure 1 depicts a small sample of the type of complex
data set that our mining approach applies to. In this com-
puter performance data set, each instance (row) corresponds
to a single test in which a process was run until it com-
pleted a task. The attributes describe the conditions under
which the test was run and state information collected dur-
ing the test including “standard” attributes such as proces-
sor speed and physical memory size; set-valued attributes
such as the options or flags that were specified to the pro-
cess and which algorithms the process implemented; and se-
quential attributes such as the CPU utilization percentage,
memory usage, and the total number of processes running
over time. Other such numeric and nominal sequential at-
tributes not shown in Figure 1 include CPU usage of all
other processes, memory usage of all other processes, 1/0O
activity on main storage devices, memory paging, and pro-
cess state (running, exit normally, exit without output). All
time sequence attributes in a single data instance share the
same time line.

Events of interest in the sequential attributes in this data
set include among others increases and decreases in the uti-
lization of a resource (CPU, memory), going above/below a
certain usage threshold, and whether or not a process ter-
minates normally.

A sample interesting temporal pattern in this domain is:
“Java processes running a machine learning algorithm that
are not given the -P option, that exhibit an increase in its
memory usage, and that during this increase its memory
paging also increases tend to, with likelihood 82%, exit pre-
maturely”. This temporal pattern is captured by our asso-
ciation rule:

flag=-P-missing & process(java)-mem-usage-increase [to,t2]
& process(java)-page-increase [t1,l2] =
process(java)-exit-without-output [¢3,t4], conf=82%.

Here, to,t1,t2,ts3, and t4 are relative time indices that are
used to express the relative order in which these events are
observed.

The algorithm presented here to mine these temporal re-
lationships, AprioriSetsAndSequences, takes as input a com-
plex temporal data set as described, a set of predefined event
types, and the standard Apriori minimum support and min-
imum confidence parameters. An event type is a template of
a subsequence of interest in a time sequence attribute. Our
mining algorithm starts by identifying occurrences of these
event types in the corresponding sequence attributes as de-
scribed in Section 2. Then, it generates all the frequent re-
lationships among the temporal occurrences of these events
and among these and the other non-temporal attributes.
Section 3 describes the algorithm in detail. Since there are
13 ways of sorting just two events in time (before, after,
overlaps, etc.) [7], and the number of possible orderings of a
set of events grows exponentially with the number of events
in the set, central issues in the design and implementation of
our mining algorithm are the strategy used to prune unnec-
essary orderings from consideration, and the data structures
used to effectively handle potentially frequent orderings of
events. We describe these in Sections 3 and 4. These sec-
tions also describe our extensions of the basic notions of sup-
port and confidence needed to handle multiple occurrences
of an event or a pattern in a complex data instance. Sec-

tion 5 presents an evaluation of our mining algorithm in the
stock market domain. Section 7 summarizes the contribu-
tions of this paper and discusses future work investigating
alternative measures of item set interestingness and alterna-
tive search techniques for item set generation in the context
of complex data.

2. IDENTIFYINGEVENTSINSEQUENCES

Events of interests are available in multiple domains. Ex-
amples of those are head € shoulders reversal and ascending
triangle in stock market analysis [21], and increase in CPU
utilization in the performance domain. An event can be
described by a Boolean condition or by a template of the
event “shape”. Such a template can be for example a 2
dimensional curve.

Given a collection of domain specific events of interest,
we identify occurrences of those events in the sequential at-
tributes. There are many methods available for matching
patterns against a sequence. These include similarity search
using Discrete Fourier Transform [3], bounding boxes for
clustering over a Fourier Transform feature space [15], and
dynamic programming time warping [9].

Work has also been done to discover common patterns in
transactional sequences [28]. These are all valid methods
for specifying and identifying events for AprioriSetsAndSe-
quences.

Once the occurrences of an event of interest have been
identified in the values of a sequential attribute, they are
stored in a new event set attribute. We define an event
set attribute as an attribute whose values are sets of an
event type occurrences. As an example, consider an event
attribute for the CPU time sequence attribute. The CPU
time sequence attribute is the percentage of CPU usage in
the overall computer system. This event attribute specifies
when the CPU usage increases. Assume that in a particular
data set instance /, increases in CPU usage occur from time
2 to 8, 13 to 19, and 35 to 47. Then, the I’ value for the
new attribute CPU-Increase is { [2,8], [13,19], [35,47] }.

AprioriSetsAndSequences mines temporal associations di-
rectly from events. This keeps intact the temporal informa-
tion represented in the data set while eliminating much of
the work involved in scanning the actual sequences during
mining. The events are akin to indexes into the sequences.

3. BASIC ASAS

Input. ASAS takes as input a data set consisting of in-
stances. Each instance has a set of attributes. Attributes
can be of type nominal, set, and event set. An event set is
simply a set whose elements are events. An event consists
of three pieces of information. First is the time sequence
attribute in which the event occurred. Second is the name
of the event. Third is the period of time during which the
event occurred. The time sequence attribute name and the
event name together define the event item type.

ASAS takes parameters that are similar to those accepted
by regular Apriori. In addition to minimum support and
minimum confidence is the maximum number of event items
of the same type allowed in a rule.



D] flags CPU % CPU (MHz) memory % memory (kB) algorithms

1| {R, -H} 600 523760 {neural met, backy
propagation }

21 |} a0, 52, 67, 80, ... 600 10, 26, 46, 69, 86, ... 523760 1C45)

371U, R} 10, 39, 87, 96, ... 300 19, 50, 82, 80, 70 ... 260592 Tnaive bayes]

Figure 1: A sample of a data set containing complex instances. Here, sequential values are represented in a

graphical manner only for the first row to save space.

Internal Representation of ltemShe attribute value for-
mat of the data set is common among data mining tools. In
order to mine association rules from this data it is translated
into an item representation. Each possible attribute value
pair that exists in the data set is defined as an item and
given an integer number called the item number. In ASAS
there are two kinds of items. Regular items are formed from
attribute value pairs where the value is not a sequence or an
event set. The regular items are uniquely identified by their
integer number. Event items are formed from attributes
whose values are event sets. While event items are given an
item number it is still necessary to interpret the item’s value
during the association rule mining process.

Handling Set Attributeswe use the extension of the Apri-
ori algorithm to mine association rules from set valued data
described in [27]. This extension was added to the Weka
system.

Handling Event AttributeSEvent items are interpreted
rather than being treated as a literal. That is the value of
an event item has meaning during the mining process. For
instance, we are not interested in the occurrence of a CPU-
Increase event at absolute time [13,18], but rather on the
fact that this event occurred in a relative temporal position
with respect to other events. For this purpose, ASAS uses
a relative time line. The relative time line is denoted by
to,ti,t2,.... There are no units implied. Each point on
the relative time line corresponds to the begin times or end
times of one or more events in the item set.

When an event is added to an item set the item set’s
relative time line must be updated. Let’s add the event
Memory Sustain with real times [2,35] to the item set shown
below. Both the real time and relative times for the events
in the item set are shown.

real times: {Disk Increase [5,25], CPU Increase [10,40]}
relative times:
{Disk Increase [tg,t2], CPU Increase [t1,ts]}
+ Memory Sustain [2,35] =
relative times:
{Disk Increase [t1,t3], CPU Increase [t2,t5], Memory
Sustain [to,t4]}

As you can see simply sorting the real time values and
numbering them starting from 0 yields the relative times.

Level 1 Candidate Generatiomu Apriori the first level
of candidate item sets is generated by simply creating an

item set of size one for each of the items appearing in the
data set. These item sets are added to a list of candidate
item sets. This basic process is used in ASAS.

Regular items are treated the same. A candidate item
set is not generated for each event item. Event items have
a type, usually a name that combines the original time se-
quence attribute name and the event detected in the se-
quence. There are usually multiple event items of a single
type in a data set. Each event item may have a unique begin
and end time. If a candidate item set were created with these
event items with unique begin and end times they would be
too specific and a frequent item set containing them would
not likely be found. Instead, a representative event item for
each event type is created. This new item is added to a
candidate item set.

Level 1 Counting Supportrhe support of an item set
is the percentage of instances in the data set that contain
the item set. The weight of an item set is the number of in-
stances that contain it. The weight of an item set is counted
and then used to calculate support.

In Apriori determining if an item set is included in an
instance is a straight forward procedure. The list of items
in the item set is compared to the list of items in each data
set instance. If all items in the item set are found in the
instance that instance counts towards the weight of the item
set.

For regular items the Apriori algorithm remains the same.
Event items require special attention. During the counting
of support the value, that is the name of the event and the
time during which it occurs, must be evaluated instead of
relying solely on the integer representation used by Apriori.

Determining if an item set is included in a data set in-
stance in ASAS is not as straightforward. In an instance
there may be many event items of one type. The event items
in the instance that match the event items in the item set
must be chosen so the temporal relationships between them
are the same. When an item set containing event items is
included in an instance their exists a mapping between the
matching event items from the item set to the instance.

Mapping event items is trivial when the item set contains
a single event item. This is because the relative begin and
end times are always tg and ¢1, respectively. As long as the
instance contains an event item of the same type a mapping
is guaranteed. This is the case for all item sets of size one
containing one event item.



Level 2 Candidate Generatioma Apriori, candidate item
sets of size two are generated by combining each pair of fre-
quent item sets of size one. Combining item sets of size one
is a simple matter since each pair results in a valid candi-
date. The same is true for ASAS. The difference is that for
each pair of event items there exists thirteen different item
sets that represent the different temporal relationships [7]
those two event items can have together.

Level 2 (and up) Counting Suppottirst, the instance
must contain all the regular items in the item set. If they
are all present, inclusion of the event items are checked. If
the item set contains only one event item the checking is
trivial as described above in Level 1 Counting Support. If
the one event item is found, the weight of the item set is
incremented.

If the candidate item set contains two event items (or more
in subsequent levels) then a mapping must be made from
event items in the item set and event items in the instance.
The relative begin and end times of event items in an item
set and an instance are stored for quick reference in an array.
Each index of the array represents that relative time along
the time line. In each array cell is a list of begin and end
labels for each event with that corresponding begin and end
time. A mapping between relative times in the item set
and in the instance represents a partial possible mapping
between the begin and end labels of the event items, and
hence a mapping between the event items themselves.

A mapping is made between an item set’s relative times
and an instance’s real times by starting at time {9 on the
item set’s time line. Starting at t=0 in the instance, the ear-
liest time index containing a list of begin labels for the same
type of events as those in the item set is found. Once this
corresponding time index is found it is noted as a possible
map for that relative time in the item set. The remaining
time indexes in the item set are mapped in the same way,
always starting at the next relative time in the instance.

Once a possible map is created it is tested using the end
time labels. Begin and end time labels are paired together,
belonging to a single event item in the item set. The corre-
sponding begin and end labels in the instance must belong
to a single event item as well. Furthermore, an event item
in the instance can only be mapped to a single event item
in the item set as the begin and end labels must.

Once the map is validated the weight of the item set is in-
cremented. If the map is found to be invalid the last relative
time used in the instance is skipped and another possible
map of relative times is created and tested. This contin-
ues until there are no more relative times left to try in the
instance.

Level 3 (and up) Candidate Generationt the third
level of Apriori’s candidate item set generation, generating
possible frequent item sets of size 3, there are ways to elim-
inate some of the candidates before counting support. The
items in an item set are sorted in ascending order according
to their item number. To combine two item sets to form a
new item set one size larger there are a list of conditions that
must be met. They must have the same number of items.
The list of items in both item sets must be the same except
for the last item which must be different. Furthermore, the
last item in the second item set must have a higher item
number than the last item in the first item set. If two item

sets do not meet these criteria they are not combined to gen-
erate a candidate item set. The candidate item set formed
by combining two item sets simply has the superset of the
items in each. This is easily done by adding the last item of
the second item set to the first item set.

Combining item sets has been modified for ASAS. All of
the conditions still hold for regular items. The event items
have to be handled as a special case. Since there is the
possibility of there being more than one temporal relation-
ship between the same set of event items the item number
alone cannot be used to decide if two item sets should not
be joined. Rather, a mapping must exist from all the event
items in the first item set to all the event items in the second
item set. This excludes event items that are the last item in
an item set. Once this mapping is found the item sets can
be combined.

As for level two candidate generation, it is possible for
more than one candidate item set to be generated for each
pair of frequent item sets that are combined. The algorithm
for generating these possibilities is more involved than the
straight forward iteration of thirteen possible temporal re-
lationships. When more than two event items are present
the number of temporal combinations grows. This number
is limited during candidate generation by using the relative
temporal information contained in each item set.

A: { Disk Increase [to,t2], CPU Increase [t1,t3] }
B: { Disk Increase [t1,t2], Memory Sustain [to,ts] }

Consider combining the item sets A and B shown above.
These can be combined since they have the same number of
items, a mapping exists between the Disk Increase event in
item set A and the Disk Increase event in item set B, and
the event items listed last in A and B are different. The
temporal relationship between the CPU Increase event in A
and the Memory Sustain event in B is not known. Some
of the possible relationships can be eliminated by inferring
information from the fact that the Disk Increase event in
both A and B is the same event.

Combining the two item sets is done by adding the last
item from the first item set to the second item set. In this
example the event item Memory Sustain will be added to
item set A. First, the begin time of Memory Sustain event
to be added to item set A must be determined. In item set
B the Memory Sustain event began before the Disk Increase
event began. This temporal relationship must hold for the
item sets being generated. In the item set A there is nothing
before the begin time of Disk Increase. Therefore the only
relative time Memory Sustain can begin is one time line
value before time 0.

Next the end time of the Memory Sustain event must be
determined. From item set B it can be seen that the Disk In-
crease event ended before the Memory Sustain event ended.
This means that each relative time in the item set A that
occurs after the end of the Disk Increase event is potentially
when the end of the Memory Sustain event occurs. This in-
cludes the times noted in the time line for A and each time
in between those marked times.

The possible begin and end time pairs determined are in
relation to item set A’s existing relative time line. A candi-
date item set is generated for each pair. In these candidate
item sets the relative time line will be renumbered starting
from 0 to include the Memory Sustain event.



{Disk Increase [t1,t3], CPU Increase [t2,t5], Memory
Sustain [to,t4]}

{Disk Increase [t1,t3], CPU Increase [t2,t4], Memory
Sustain [to,t4]}

{Disk Increase [t1,t3], CPU Increase [t2,t4], Memory
Sustain [to,t5]}

By inferring temporal relationships from the event items
in common between the item sets that are being combined
many candidate item sets representing different temporal re-
lationships can be eliminated. An important observation to
make is that this reasoning is only necessary when each item
set has more than one event item. If each item set contains
exactly one event item each the generation of candidates fol-
lows the procedure described in Section 3 Level 2 Candidate
Generation.

Algorithm
1: given a data set of instances DS, and minimum weight

minW

2: for all regular items ¢ in DS do

3:  create candidate item set ¢ of size k = 1

4: add i to ¢ and add ¢ to candidate list C'

5. end for

6: for all event items e in data set do

7: if event type of e not present in event type list KT
then

8: create candidate item set ¢ of size k = 1

9: create a new event item ei with event type of e and

begin time = 0 and end time =1

10: add ei to ¢, add ¢ to C, and add e to ET

11: end if

12: end for

13: for all instances I in DS do
14: for all ¢ in C do

15: if I contains the item in ¢ then
16: increment weight of ¢

17: end if

18: end for

19: end for

20: for all ¢ in C do
21:  if weight of ¢ > minW then

22: add c to frequent item sets of size k list
23:  end if
24: end for

25: remove all from C'

26: while frequent item set of size k list is not empty do

27: k++

28:  for all pairs of item sets f1 and f2 in the frequent

item sets of size k-1 list do

29: if f1 and f2 contain event items then

30: generate 13 candidates, 1 for each possible tem-
poral relationship between the event items f1 and
f2 do not have in common

31: else

32: generate 1 candidate by combining f1 and f2
33: end if

34: add generated candidate(s) to C'

35:  end for

36: for all instances [ in DS do

37: for all cin C do

38: if all regular items ¢ in ¢ are included in / then

39: if mapping exists between all event items ei
in ¢ to event items in I such that all temporal
relationships are the same then

40: increment weight of ¢

41: end if

42: end if

43: end for

44:  end for

45:  for all ¢ in C' do

46: if weight of ¢ > minW then

47: add ¢ to frequent item sets of size k list
48: end if

49:  end for

50:  remove all from C
51: end while

4. ASASDETAILS

Some details of ASAS were left out of the basic algorithm
explantation for clarity. Here are some important details,
enhancement features and performance improvements over
the algorithm presented in Section 3.

Multiple Events Of The Same Typkhe items in the
candidate item sets of size one generated in the first level
of ASAS (see Section 3) are the only items that will appear
in the frequent item sets and association rules generated
from them. If multiple event items of the same type are
to appear in a rule they must be present in the first level
of candidate item sets. This requirement changes the Basic
ASAS algorithm described in Section 3. Instead of creating
one event item for each event type multiple event items of
the same type are created.

Instead of just: item # 1. Memory Sustain [to,t1]
we create:
item # 1. Memory Sustain [to,t1]
item # 2. Memory Sustain [to,t1]
so that later when item sets containing items 1 and 2 are
combined we can get:
Memory Sustain [to,t1], Memory Sustain [t2,t3]
Memory Sustain [to,t2], Memory Sustain [t1,t3]

The number of event items of each event type are counted.
For each event type a number of new event items are created.
This number is the maximum number of event items of the
same type specified by the user or the number of event items
found in the data set of that type, whichever is smaller.

The more event items of the same type allowed, the more
event items there are to count support for and use to gener-
ate new candidate item sets. The higher the maximum is set
the more work there is to mine impacting performance neg-
atively. The higher the maximum is set the more potentially
expressive the rules found could be.

Duplicate Item SetsIo mitigate the work imposed by en-
abling the discovery of rules containing multiple events of the
same type, ASAS modifies how support is counted. Instead
of one list of candidate item sets there are two. The count
candidates list holds the item sets that will be counted in the
data set. The all candidates list holds all item sets including
those that do not have to be counted.

An item set is considered a duplicate of another when both
contain the same regular items and each event item has a



corresponding event item of the same type with the same
begin and end times. It is trivial to identify these duplicate
item sets when generating candidates of size one. When a
duplicate item set is generated it is not added to the count—
candidates list. It gets added to the all candidates list. A
hash table stores the map of duplicate item sets in the all-
candidates list to item sets in the count candidates list.
Only the item sets in the count candidates list are com-
pared to the instances in the data set. After the support

counting process is done the duplicate item sets in all candidates

are assigned the weight of their corresponding item set in the
count candidates list.

Calculating ConfidenceTraditionally confidence is de-
fined for a rule A = B as the percentage of instances that
contain A that also contain B. This is usually calculated as
S(AB) / S(A), where S is support.

Take a data set that has one time sequence; <a,b,a,a,a,a>.
Consider a rule A = B where both A and B contain one
event item each, alto,t1] and b[t2,t3] respectively. The event
item a begins at time 0 and ends at time 1. The event item
b begins at time 2 and ends at time 3. Since there is one
instance in our data set and it contains the item set {A, B}
as described, the support of the item sets {A}, {B}, and {A,
B} are 1. If support was used to calculate the confidence of
the rule A = B it would be 1. This implies that in the data
set from which the rule was mined that 100 % of the time
a appears, b follows. Looking at the time sequence, only 20
percent of the time is a followed by b.

Let’s use event weight to define confidence. Event weight
is a count of how many times the events in an item set
appear in all the instances in which the item set has been
found. Tt is possible that the pattern described by an item
set’s events occur multiple times inside a single instance.

Confidence of a rule containing event items in both the
antecedent and consequent of the rule is defined here as

EW(A=B) / EW(A), where EW is event weight and EW(A=-B)

is the number of occurrences of A which can be extended to
{A, B}. The event weight of the item set {A} is 5. Of those
5 only 1 can be extended to {A, B}. The confidence for
A = B is 0.2, or 20 percent. Clearly this more accurately
represents the data set.

Since event weight is counted in relation to the antecedent
of a rule being extended to encompass the consequent of a
rule, the event weight counting is done during rule genera-
tion and not frequent item set mining.

5. EMPIRICAL EVALUATION

Stock Market DataThe data used consists of ten years
worth of closing prices from 7 technology companies from
1992 to 2002 obtained from Yahoo! Finance. Additionally,
events such as new product releases, awards received, neg-
ative press releases, and expansions or mergers from each
company were obtained from each respective company’s web
site. Fach instance in this data set represents a single quar-
ter year. There are 24 instances in the data set. All 10 years
are not represented because information on the additional
events listed above were not available for all years.

Before mining, the sequences of closing prices for a quarter
for each company are filtered for events. For each predefined
event and closing price sequence, a new attribute is created

indexing where this event type occurs in the sequence. The
closing price sequence attributes are then removed from the
data set. The financial events detected include rounded top,
selling climax, ascending triangle, broadening top, descend-
ing triangle, double bottom, double top, head & shoulders,
inverse head & shoulders, panic reversal, rounded bottom,
triple bottom, triple top, sustain, increase, and decrease [21].
This data was compiled by [18].

51 Rules

The associations rules presented here are in the form A
= B, where A and B are each a set of items. Further-
more, events are annotated with their begin (¢1), and end
(t2) times as such: [t1,t2]. This is followed by the confi-
dence, support, and event weight of the rule. The minimum
and maximum possible length of each event type appearing
in the rule is specified. These rules were obtained by ap-
plying AprioriSetsAndSequences to the data set described
in Section 5. Let’s look at a fairly simple rule containing
events.

CSCO Increase [to,t1] = CSCO Sustain [t2,t3]
[Conf: 0.8, Sup: 0.42, Event Weight: 16]

CSCO Increase 6-11 days, CSCO Sustain 6-11 days

This rule reads: The closing stock price of Cisco Systems
Inc increased in value for 6 to 11 days. With a confidence
of 80% the closing price of Cisco will remain fairly constant
for 6 to 11 days sometime after Cisco’s closing price stops
increasing. It will do this during the same quarter year the
increase took place. There is no overlap in time between the
two events of this rule. With a support of about 42% this
happens in about 10 of the quarters represented in the data
set. In these 10 instances this behavior is found 16 times as
noted by the event weight. Let’s look at a rule similar to
the one described above.

NXTL Selling Climax [to,t1] = NXTL Sustain [¢2,t3]
[Conf: 0.8, Sup: 0.67, Event Weight: 24]

NXTL Selling Climax 6-12 days, NXTL Sustain 6-12 days

Here the company of interest is Nextel Communications
Inc. The relationship between the events are the same. The
support is higher with this rule being found in 16 quarters.
In the 16 instances representing those quarters this rule is
found 24 times. This rule and the previous one are examples
of predicting future values in a single sequence. This is just
one form of the rules ASAS can find.

Diagnostic rules concerned with a single sequence can also
be found. Rather than predicting an event to begin or end
after the events in the antecedent, a diagnostic rule describes
an association of events beginning or ending before those
in the antecedent. This includes events in the consequent
which occur between or during events in the antecedent.

INTC Increase [ta,t3] = INTC Selling Climax [to,t1]
[Conf: 0.87, Sup: 0.46, Event Weight: 13]

INTC Increase 6-8 days, INTC Selling Climax 6-13 days

Intel Corporation’s closing stock price increases for 6 to
8 days. Before Intel’s stock price increases it goes through
a selling climax that lasts 6 to 13 days during the same
quarter. Let’s look at a pair of rules. These have the same
events in them but one has a predictive form and the other
has a diagnostic form.



CSCO Expand Merge [t4,ts5]
& AMD Ascending Triangle [to,t1] = SUNW Sustain [¢2,t3]
[Conf: 0.91, Sup: 0.42, Event Weight: 10]

AMD Ascending Triangle [to,t1] & SUNW Sustain [t2,t3]
= CSCO Expand Merge [t4,l5]
[Conf: 1.0, Sup: 0.42, Event Weight: 11]

CSCO Expand Merge 1-7 days,
AMD Ascending Triangle 6-30 days, SUNW Sustain 6-13
days

Advanced Micro Devices Inc’s closing stock prices exhibits
a pattern known as an ascending triangle for 6 to 30 days.
Sometime after but during the same quarter Sun Microsys-
tems Inc’s closing stock price remains fairly constant for 6
to 13 days. Sometime after in the same quarter Cisco goes
through a period of expansion or merger for 1 to 7 days.
The predictive form of the rule has a 100% confidence. In
any quarter in the data set, every time AMD and Sun ex-
hibit the behaviors described in these rules, Cisco expands
or merges.

This example shows rules where events identified in dif-
ferent numeric sequences and symbolic events are related in
time. The temporal relationships effect the confidence of the
rules, even when they have the same events. This example
also shows ASAS can find diagnostic forms of association
rules.

AMD Sustain [to,t2] & INTC Sustain [t1,t3]
= MSFT Sustain [t4,t5]
[Conf: 0.78, Sup: 0.42, Event Weight: 7]

AMD Sustain 6-9 days, INTC Sustain 6-10 days,
MSFT Sustain 6-13 days

AMD’s closing stock price remains fairly constant for 6 to
9 days. During this 6 to 9 days interval Intel Corporation’s
closing stock price begins to remain fairly constant. Intel’s
sustain period last for 6 to 10 days. During this 6 to 10 day
period AMD’s sustain ends. Sometime after Intel’s sustain
period ends but in the same quarter year, Microsoft Corpo-
ration’s closing stock price remains fairly constant for 6 to
13 days.

Events overlapping in time make the temporal relation-
ships between events more precise and may make it more
interesting. These rules can be found by ASAS in predictive
and diagnostic forms.

An interesting characteristic of some of the rules found in
our dataset with overlapping events was that they described
the events themselves in terms of other events. A company’s
closing stock price could exhibit a complicated behavior like
a selling climax. A portion of this complicated behavior
may be similar to a much simpler behavior such as a sustain
in stock closing price. ASAS can find rules that state a
sustain event and selling climax event can overlap in the
same sequence as illustrated in the rule below.

AMD Selling Climax [to,t2] = AMD Sustain [t1,t3]
[Conf: 0.61, Sup: 0.42, Event Weight: 14]

AMD Selling Climax 6-15 days, AMD Sustain 6-9 days
Parts of complicated events can also be found similar.

SUNW Inverse Head & Shoulders [t1,t3]
= SUNW Descending Triangle [to,t2]

[Conf: 0.71, Sup: 0.42, Event Weight: 12]

SUNW Inverse Head & Shoulders 6-14 days, SUNW
Descending Triangle 6-24 days

5.1.1 Multiple Occurrences of Event Type

AprioriSetsAndSequences algorithm allows rules to be found
containing multiple occurrences of events with the same

type.

CSCO Sustain [to,t1] = CSCO Sustain [t2,t3]
[Conf: 0.81, Sup: 0.54, Event Weight: 38]

CSCO Sustain 6-11 days

Cisco’s closing stock price remains fairly constant for 6
to 11 days. With a confidence of 81% we can say later
in the same quarter Cisco’s value will experience another
6 to 11 days period of sustain. It is interesting to compare
rules which predict the same repeating patterns for different
companies. Below are the confidence, support and event
weight for repeating sustain rules of the noted companies.

SUNW [Conf: 0.87, Sup: 0.58, Event Weight: 39]
MSFT [Conf: 0.86, Sup: 0.63, Event Weight: 36|
NXTL [Conf: 0.83, Sup: 0.63, Event Weight: 40]
AMD [Conf: 0.81, Sup: 0.54, Event Weight: 35]

Let’s compare two rules in which one an event repeats
twice and the other the same event repeats three times.

INTC Sustain [to,tl] = INTC Sustain [tz,tg]
[Conf: 0.92, Sup: 0.63, Event Weight: 44]

INTC Sustain [to,tl] =
INTC Sustain [t2,t3] & INTC Sustain [t4,t5]
[Conf: 0.71, Sup: 0.42, Event Weight: 34]

INTC Sustain 6-10 days

Notice the reduced confidence in predicting Intel’s stock
price will undergo a sustain period twice more in the same
quarter. Repeating events also occur in events that were not
obtained from a sequence. The rule below shows a repeating
Cisco Expand Merge event.

CSCO Expand Merge [to,t1]
= CSCO Expand Merge [t2,t3]
[Conf: 0.9, Sup: 0.46, Event Weight: 36]

CSCO Expand Merge 1-7 days

Rules with repeating events are not limited to just one
type of event. Below is an example of a rule containing
both a singular event and a repeating event.

CSCO Expand Merge [t4,t5] & NXTL Sustain [to,t1]
= NXTL Sustain [t2,t3]
[Conf: 0.92, Sup: 0.42, Event Weight: 24]

NXTL Sustain [tz,t3] & NXTL Sustain [to,t1]
= CSCO Expand Merge [ta,l5]
[Conf: 0.67, Sup: 0.42, Event Weight: 16]

CSCO Expand Merge 1-7 days, NXTL Sustain 6-12 days

As shown above rules with repeating events can be found
in predictive and diagnostic forms.



5.2 ASASPerformance

Figure 2 shows the seconds used to mine rules per frequent
item set found and other metrics for slightly differing data
sets from the stock market domain. The total time it takes
to mine appears to be insensitive to the number of event
attributes, the number of event occurrences, and the average
length of the time line. It seems only the number of frequent
item sets found in a data set greatly increases mining time.
The time spent finding each frequent item set seems related
to the number of event occurrences and the number of event
attributes in the data set.
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Figure 2: Various Metrics

Figure 3 shows the results of varying the maximum num-
ber of events with the same type that can appear in a rule.
This was done with a support setting of 49%. 16 rules con-
taining 2 events of the same type were found. Beyond a
maximum of 2 more time is spent per frequent item set with
no additional rules found to justify the cost. The lower the
percentage of new rules found by increasing the maximum
number of events of the same type allowed, the more time
per frequent item set will be spent during mining. Figure 4
shows results using a support of 40%. This tradeoff is easily
seen. Even though more rules are found due to the lower
support, more time is spent per frequent item set.

6. RELATED WORK

There has been a great deal of interest in devising ap-
proaches to mine associations from sequential data. These
approaches can be roughly divided into two groups. The
first group contains approaches that extend the Apriori al-
gorithm to sequences. These approaches assume data in-
stances that are sequences of commercial transactions. A
commercial transaction is called an event. These approaches
mine frequent patterns from those data instances. Among
others, the work by Srikant and Agrawal [6] and by Zaki
[33] and collaborators belong to this group. They use the
notions of time window and maz/min gaps to address the
complexity of the mining task. Zaki [33] considers item set
constraints for this same purpose. One difference between
our work and the approaches in this group is that our no-
tion of event is a non trivial time interval and theirs is a
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Figure 4: 40 Percent Support

point in time (instantaneous events). This has a profound
impact on the expressiveness of our association rules and
on the complexity of the mining process, as in our case the
possible orderings of two single events is 13 while for them
that number of orderings in only 3. Another important dif-
ference is that in our approach we consider data instances
that are combinations of several attribute types, while their
instances are sequences of transactions.

The second group of association rule mining approaches
to sequential mining includes the work by Mannila et al.
[24, 23, 13]. They consider episodes of events, where events
are once again points in time. Episodes are collections of
partially ordered events that occur close to each other in
time. This constraint addresses the complexity of the search
in a way similar to the time window approach described
above. Our work extends theirs by allowing events that
are time intervals. This enhances the collection of partial
orders that are applicable to a set of events and thus the

# frequent item sets

# frequent item sets



expressiveness of the mined patterns.

Roddick and Spiliopoulou [26] provide an excellent survey
of temporal knowledge discovery. Rainsford and Roddick
[25] report efforts on extending association rules with tem-
poral information. Their work is similar to ours in that they
also consider the 13 possible ways in which two temporal
events can be ordered in time. However, the expressiveness
of their association rules is very restricted in comparison
with ours. Bettini et al. [10] describe an approach to mine
temporal associations that allows the user to define a rule
template, and their algorithm finds valid instantiations of
the rule template in the data set. Our approach is more
general than theirs in that the user is not restricted to use
just one temporal template for each mining task, as our al-
gorithm considers all possible temporal patterns that are
frequent. Also, we can explore several time—granularities
during the same mining task, just by defining an event
based attribute for each relevant time—granularity and let-
ting them “intersect” with other events of interest. The
events in these time granularity attributes would simply de-
fine intervals of the time granularity it represents. For a
real time line whose units are days the time granularity at-
tribute for weeks would identify an event for every seven
days along the real time line. Other approaches that em-
ploy user—defined temporal templates are those described
by Han and collaborators [29, 22]. Their multidimensional
intertransaction association rules are particular cases of our
complex temporal association rules.

7. CONCLUSIONSAND FUTURE WORK

We introduce an algorithm for mining expressive temporal
relationships from complex data sets in which a single data
instance may consist of a combination of attribute values
that are nominal sequences, time series, sets, and traditional
relational values. Our mining algorithm is close in spirit
to the two-stage Apriori algorithm. Our work contributes
the the investigation of prune strategies and efficient data
structures to effectively handle the added data complexity
and the added expressiveness of the temporal patterns.

Several alternative methods to Apriori’s item set genera-
tion have been proposed in the literature. Those alternative
methods differ from Apriori in their strategy to generate
frequent item sets, or in the item sets that they consider
interesting. Some approaches attempt to increase the per-
formance of the mining algorithm over certain types of data
[35]; compute frequent item sets very efficiently [16, 32, 20,
17]; or utilize parallel computing environments [5, 34]. Work
by Webb [30], Agarwal, Aggarwal, and Prasad [1, 2], and
Bayardo, Agrawal, and Gunopoulos [8] address some of the
efficiency concerns by means of novel and judicious search
techniques for item set generation. Modifications and gen-
eralizations of association rules that are more suitable to
certain application domains are investigated by Brin, Mot-
wani, and Silverstein [11] and by Cohen et al. [12]. Addi-
tional work on using statistical measures of item set inter-
estingness other than support and lift are investigated by
DuMouchel and Pregibon [14] and by Wu, Barbara and Ye
[31].

In this paper we focus on the necessary extensions of the
traditional support and confidence framework to handle the
desired complex associations. Zhen, Kohavi, and Mason [36]
show experimentally that although some well known alter-
native association rule mining approaches discussed above

outperform Apriori over artificial data sets, they do not over
real-world data sets. The work described here provides a
foundation for future investigation and comparison of alter-
native measures of item set interestingness and alternative
search techniques such as those discussed above but in the
context of complex data.
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