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Abstract





Temporal relationships between events and their effects are complex. As the effects of a given event, a proposition may change its truth value immediately after the occurrence of the event and remain true until some other events occur, while another proposition may only become true/false from some time after the causal event has occurred. Expressing delayed effects of events has been �a problematic question in most existing theories of action and change. This paper presents a new formalism for representing general temporal causal relationships between events and their effects. It allows expressions of both immediate and delayed effects of events, and supports common-sense assertions such as "effects cannot precede their causes".








1. Introduction





	The notion of state is central in most conceptualisations of the physical world. The states of the world, which may be expressed as a set of propositions, are changed by certain relevant patterns which are termed in the literature as actions/events. The concepts of change and time are deeply related since changes are caused by events, while events can be expressed as actions performing over certain time intervals/points. Over the last decade, several extensions to McCarthy and Hayes’ framework of situation calculus [8,9], and to Kowalski and Sergot’s event calculus [6], have been proposed (including that of Schubert [15], of Lin and Shoham [7], of Gelfond et al [4, 5], of Pinto and Reiter [12, 13, 14], and of Miller and Shanahan [11]) in order to enrich the temporal ontology in reasoning about action and change. These formalisms usually associate entities such as situations/states, fluents, and actions with some special time, where time elements are characterised as points and intervals are constructed out of points. However, these approaches have not gone as far as one would like for dealing with temporal issues in representing and reasoning about actions and their effects, and there are still some problematic issues which have not been satisfactorily solved.


	Generally speaking, the world persists in a given state until some action is carried out to change it into another state. While some actions may be instantaneous, most of them perform over some interval of time. Hence, both points and intervals are needed for expressing the time spans of situations and actions. However, temporal relationships between events and their effects are complex. For instance, on the one hand, as the effect of a given event, a proposition may change its truth value immediately after the occurrence of the event, i.e., there is no delay time between the occurrence of the event and the change of the truth value; on the other hand, a proposition may only become true/false from some time after the event that is supposed to make it to change its true value has occurred.


	Expressing the delayed effects of events has been �a problematic question in reasoning about action and change. In fact, in most existing temporal theories, including that of Schubert [15], of Lin and Shoham [7], of Pinto and Reiter [13, 14], and of Miller and Shanahan [11], the effects of actions have been represented as the immediate results just after the execution of the corresponding actions. Actions with delayed effects have not been addressed in these systems. In [5], Gelfond et. al. propose an approach in terms of duration of actions to describe an action with delayed effects. They simply count the delay time in the duration of actions. In this way, actions have been considered to continue until the results of actions appear. However, this does not really match the common-sense idea of an action with delayed effect, which in fact intuitively means that there is a delay time between the performance of the action and its effect. E.g., 25 seconds after a pedestrian starts pressing the button at the crosswalk, the pedestrian crossing light turns to yellow from red, and after another 5 seconds it, turns to green.


	The objective of this paper is to propose a new formalism for representing general temporal causal relationships between events and their effects. In section 2, we present the logical preliminaries of the new formalism. Section 3 illustrates the expressive power of the new formalism. Section 4 concludes the paper.





2. The Logical Preliminaries





	The formalism consists of three disjoint sorts of objects T, F and A, called times,  fluents and actions, respectively (By fluents in this paper, we mean propositions whose truth values are dependent on time). We shall denote the elements of T, F and A by letters (possibly indexed) t, f, and a.





2.1 The Underlying Time Structure





	In [10], a general time theory is proposed which addressed both points and intervals as primitive time elements. It is in fact an extension to Allen and Hayes’ interval based temporal logic [1, 2]. In what follows, we briefly describe such a time structure which will be used as the temporal basis of the formalism.


	We use Duration to denote a duration assignment function which assigns a non-negative real number for each time-element in T. A time-element t is called a (time) interval if Duration(t) > 0, otherwise t is called a (time) point. The primitive relation over time elements, Meets, is axiomatized by:





(A1) (t1,t2,t3,t4(Meets(t1,t2) ( Meets(t1,t3) ( Meets(t4,t2) 			( Meets(t4,t3))


i.e., the "place" where two time elements meet is unique and closely associated with the time elements;


(A2) (t(t',t''(Meets(t',t) ( Meets(t,t''))


i.e., every time element has at least one neighbouring time element proceeding it, and another succeeding;


(A3) (t1,t2((t',t''(   Meets(t',t1) ( Meets(t1,t'')


						  ( Meets(t',t2) ( Meets(t2,t''))


					( t1 = t2)


i.e., the time element standing between any two meeting places is unique;


(A4) (t1,t2(Meets(t1,t2) (


				(t(t',t''(Meets(t',t1) ( Meets(t2,t'')


							( Meets(t',t) ( Meets(t,t''))


i.e., if two meeting places are separated by a sequence of time elements, then there is a time element which connects these two meeting places. Hence, by recalling axiom (A3), for any two adjacent time elements, t1 and t2, we may denote the adjacent union of t1 and t2 as a time interval, t = t1 ( t2. N.B., t1(t2 always implies that Meets(t1, t2).


(A5) (t1,t2(Meets(t1,t2)


				( Duration(t1) > 0 (  Duration(t2) > 0)


i.e., points can not meet other points;


(A6) (t1,t2(Meets(t1,t2)


	( Duration(t1 ( t2)


			= Duration(t1) + Duration(t2))


i.e., the duration assignment is consistent with the adjacent union operator “(” and the conventional addition “+”;


(A7) (t1,t2,t3,t4(Meets(t1,t2) ( Meets(t3,t4) (


                           Meets(t1,t4)


                        ( (t'(Meets(t1,t') ( Meets(t',t4))


                        ( (t''(Meets(t3,t'') ( Meets(t'',t2)))


i.e., meeting places of time elements are totally ordered, which ensures the linearity of time structure (here, "(" represents "exclusive-or").





2.2. Fluents





	The truth values of fluents are dependent on times. We use Holds(f, t)  to denote that fluent f is true over time t.


	We impose the following axioms on predicate Holds:





(A8) (f(t(Holds(f, t) ( (t'(Sub(t', t) ( Holds(f, t')))





N.B. Here, Sub(t1,t2) intuitively denotes that time t1 is a part of time t2:





		"t1,t2(Sub(t1,t2) Û


					   Equals(t1,t2)


					Ú Starts(t1,t2)


					Ú Finishes(t1,t2)


		Ú During(t1,t2))


	where,


			Equals(t1,t2) Û t1 = t2,


			Starts(t1,t2) Û $t'(t1 Å t' = t2)


			Finishes(t1,t2) Û $t'(t' Å t1 = t2),


			During(t1,t2) Û $t',t''(t' Å t1 Å t'' = t2)





(A9) (t1,t2(f(Holds(f, t1) ( Holds(f, t2) ( Meets(t1, t2)


			( Holds(f, t1 ( t2))


	


	Following Galton's notation [3], we refer to the operator "not" as fluent-negation, so that not(f) represents the negation of fluent f, to be kept distinct from ordinary sentence-negation, symbolised by "¬". Properties about the negation of fluents can be given as below:





	(t(Holds(not(f), t)


		( (t'(Sub(t', t) ( ¬ Holds(f, t’)))





	(t(Holds(f, t)


		( (t'(Sub(t', t) ( ¬ Holds(not(f), t’)))





Hence, any fluent and its negation can not be both true over the same time t. In other words, they are in conflict with each other. However, it is important to note that, for a given fluent, say f, it may be the case that its negation not(f) is not the only fluent which conflicts with it. That is, there may be some fluents other than not(f) that can not be true together with fluent f. Consider the example of traffic signals: let GreenOn, YellowOn and RedOn denote fluents "the green light is on", "the yellow light is on" and "the red light is on", respectively. On the one hand, we know that at any time t, if fluent GreenOn is true, then its negation not(GreenOn) must be false. On the other hand, while fluent GreenOn is true, fluent RedOn must be false as well, although fluent YellowOn may be true.





We use Conf(f1, f2) to denote that fluent f1 is in conflict with fluent f2:





(A10) (f1,f2(Conf(f1, f2)


				( (t(   Holds(f1, t) ( Holds(not(f2), t)))


						 ( Holds(f2, t) ( Holds(not(f1), t)))





	Specially, the negation of fluent f is in conflict with f. 





2.3 States/Situations





	A state, s, is defined as a subset of F(F~, where F~={not(f)|f(F}.





	A state, s, is complete if and only if:





(f(f(s ( not(f)(s)





otherwise, s is called an incomplete state.





	A state is called consistent if and only if





(f1, f2(f1(s ( f2(s ( ¬Conf(f1, f2))





otherwise, s is called an inconsistent state.


	In what follows, we shall use S to denote the set of all the consistent complete states.


	A situation, st, is a state s, associated with a particular time (point or interval) t, over which the world persists in that state. We shall write st as st = <s, t>, and denote by Sit the set of all situations.





(A11) (st(s(t(st = <s, t>)





(A12) (s(t(<s, t>(Sit (


		(f (   f(s ( Holds(f, t)


			 ( f(s ( Holds(not(f), t)))





(A13) (st((s1,s2(t1,t2(st = <s1, t1> ( st = <s2, t2>)


	( s1 = s2 ( t1 = t2)





	Axiom (A13) states that the representation for any situation is unique. Hence, for any situation st, if st = <s, t>, we shall call s and t the reference state and the reference time of situation st, denoted as State(st) and Time(st), respectively.


	By (A12) and (A8), we can directly infer that:





(s(t,t'(<s, t>(Sit ( Sub(t', t) ( <s, t'>(Sit)





and by (A12) and (A9):





(s(t,t'(<s, t1>(Sit ( <s, t2>(Sit ( Meets(t1, t2) 			( <s, t1 ( t2>(Sit)





	For reasons of simplicity, we may sometimes use Holds(f, st) to denote that fluent f is observed as true in situation st, provided that:





    (st(f(Holds(f, st) ( Holds(f, Time(st)))





2.4 Actions/Events





	Actions, given in terms of certain relevant patterns, may perform over some specified time points or intervals. We use Performs(a, t) to denote that action a performs over time t.





(A14)	(a(t1,t2( 	 Performs(a, t1)


						  ( Performs(a, t2)


						  ( Meets(t1, t2)


								( Performs(a, t1Åt2))


i.e., if an action performs over two adjacent times respectively, then it performs over the ordered union of these two times.





	The world holds in one state until an action is performed over some special time to change it into another state (may be still the same one). We shall call such a phenomenon an event. Hence, analogously to the form of a situation which are defined as a pair of a state and a time element, an event is given in the form of a pair of an action and a time, such that:





(A15)	(a(t(<a, t>(E ( Performs(a, t))





where E denotes the set of all events.


	Again, analogously to the definitions of the reference state and the reference time of a given situation, for an event e with the form of <a, t>, we shall call a and t the reference action and the reference time of event e, and, without confusion, denote them as a = Action(e) and t = Time(e), respectively.


	We use Changes(sit1, e, t, sit2) to denote the proposition that, immediately after time t, event e changes situation sit1 into situation sit2 (see Fig.1):





(A16) (e(E(sit1,sit2(Sit(t(T(Changes(sit1,e,t,sit2) (


					Meets(Time(sit1), Time(e))


				( (Equals(Time(e), t) ( Starts(Time(e), t)


				( Meets(t, Time(sit2)))
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Figure 1


	


3. The Expressive Power





	Axiom (A16) ensures that, the reference time of any event “Meets” or is “Before” the reference time of the corresponding situation caused by the event. Hence, one can directly infer the common-sense assertion that “effects cannot precede their causes”. In fact, axioms (A16) allows a flexible temporal relationship between effects and their causal events. On the one hand, some fluents may change their truth values immediately after the reference time of the causal event. In other words, there is no delay time between the effect and its causal event. This case corresponds to the form of axiom (A16) where the temporal relation between Time(e) and t in (A16) is Equals(Time(e), t), rather than Starts(Time(e), t). On the other hand, it may be the case that some fluents change their truth values from some time after the reference time of the causal event, i.e., there may be some delay times that stand between the effect and its causal event. Again, this case can be successfully expressed by taking the temporal relation between Time(e) and t in (A16) as Starts(Time(e), t), rather than Equals(Time(e), t). For instance, consider the example of the pedestrian crossing lights mentioned in the introduction. We employ the following three fluents:





	RedOn:	the red light at the crosswalk is on;


	YellowOn:	the yellow light at the crosswalk is on;


	GreenOn:	the green at the crosswalk is on;





	Let PressButton denote the action of pressing the button, and SitRed denote a situation in which the red light is on:





	Holds(RedOn, SitRed)





	Assuming in situation SitRed a pedestrian presses the button, e.g., for 1 second, then we have event E = <PressButton, TE>, and can express the effects of event E as below: 





	Changes(SitRed, E, Time(E), SitEffect’),


	Changes(SitRed, E, T1, SitEffect’’),


	Changes(SitRed, E, T2, SitEffect’’’)





where





	Dur(Time(E)) = 1,


	Dur(T1) = 25,


	Dur(T2) = 30,


	Holds(RedOn, SitEffect’),


	Holds(YellowOn, SitEffect’’),


	Holds(GreenOn, SitEffect’’’).





	Here, we have directly expressed the fact that there is no time delay between the reference time of event E and the reference time of the effect situation SitEffect’.


	Also, we can successfully express the fact there is a delay time, say TD1, standing between the reference time of event E and the reference time of the effect situation SitEffect’’, that is:





	Meets(Time(E), TD1),


	Meets(TD1, Time(SitEffect’’))





	Similarly, we can express that there is a delay time, say TD2, standing between the reference time of event E and the reference time of the effect situation SitEffect’’’, that is:





	Meets(Time(E), TD2),


	Meets(TD2, Time(SitEffect’’’))


Additionally, we can easily infer that:





	TD2 = TD1ÅTime(SitEffect’’)


where





	Dur(Time(SitEffect’)) = Dur(TD1) = 24,


	Dur(Time(SitEffect’’)) = 5,





	The above knowledge can be graphically presented as Figure 2:
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Figure 2





4. Conclusions





	In this paper, we have presented a new formalism for representing general temporal causal relationships between events and their effects. This formalism is in fact achieved by means of synthesising the quintessence of some representative theories, including that of McCarthy and Hayes [8, 9], Allen [2], Kowalski and Sergot [6], Lin and Shoham [7], Gelfond et al [4, 5], Pinto and Reiter [13, 14], and Miller and Shanahan [11], etc. The main technical contribution of the revised formalism in its power of expressing flexible temporal relationships between effects and their causes,  including both immediate and delayed effects of events. Also, it is shown that the new formalism supports common-sense assertions such as "effects cannot precede their causes".
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