
Incremental Techniques for Mining Dynamic and
Distributed Databases

Matthew Eric Otey† Adriano Veloso†‡ Chao Wang†

Srinivasan Parthasarathy† Wagner Meira Jr.‡

†Computer and Information Science Department
The Ohio-State University

‡Computer Science Department
Universidade Federal de Minas Gerais

Contact: srini@cis.ohio-state.edu

Abstract

Traditional methods for data mining typically make the assumptions that the data is
centralized and static. These assumptions are no longer tenable. Such methods impose ex-
cessive communication overhead when data is distributed. Also, they waste computational
and I/O resources when data is dynamic. In this paper we present what we believe to be
the first data mining approach that overcomes all these assumptions. In fact, we consider
a broader scenario in which the data is continuously updated and stored at geographically
different locations. This scenario imposes several challenges to data mining, especially
those concerning performance and interactivity. Our approach makes use of parallel and
incremental techniques to generate frequent itemsets even in the presence of data updates
without examining the entire database. It also imposes minimal communication overhead
when mining distributed databases. Further, our approach is capable of generating both
local models (in which each site has a summary of its own database) as well as the global
model of frequent itemsets (in which all sites have a summary of the entire database). This
ability permits our approach not only to generate frequent itemsets, but also high-contrast
frequent itemsets, from which users can know those itemsets that have their supports un-
evenly distributed among the distributed databases.

1 Introduction

Advances in computing and networking technologies have resulted in large distributed and dy-
namic sources of data. A classic example of such a scenario is found in the databases of large
national and multinational corporations. Such databases/warehouses are often composed of dis-
joint databases located at geographically different sites. Each database is continuously being
updated with new data as transactions transpire. The update rate and ancillary properties may
be unique to a given site.

A user may be interested in mining such databases in a variety of ways. They may desire to
generate a global model of the database, thus the sites must exchange some information about
their local models. However, the information exchange must be made in a way that minimizes
the communication overhead. The frequency at which the global model is updated may vary
from the frequency with each local model is updated. Furthermore, in such a distributed sce-
nario, the user may be interested in not only knowing the global data mining model, but also
the differences (or contrasts) between the local models.

Analyzing these large distributed and potentially dynamic databases requires non-trivial data
mining approaches, approaches that make proper use of the distributed resources, minimize
communication requirements, adapt to user interaction requirements and minimize/eliminate
work replication. In this paper we present an efficient approach for finding the model of fre-
quent itemsets when the data is both distributed and dynamic. Also, our approach is able to
generate the model of high-contrast frequent itemsets, from which the user can identify inter-
esting patterns that disambiguate among local databases.

The main contributions of our paper can be summarized as follows:

• An cluster of SMP sensitive parallel algorithm based on the ZIGZAG incremental mining
approach[13]. This algorithm is used to update the model at a local site.

• A distributed incremental mining algorithm that minimizes the communication costs for
mining over a wide area network or grid-space. This algorithm is used to update the
global model.

• Novel interactive extensions for computing high contrast frequent itemsets, and query
response time sensitive (approximate) parallel and distributed algorithms.

• Extensive experimentation and validation on real databases.

The rest of the paper is organized as follows. In Section 2 we highlight background and
related work. Section 3 we describe the algorithms and novel interactive extensions. Section 4
validates the algorithms and proposed work through extensive experimental results. Concluding
remarks are made in Section 5.

2 Background and Related Work

The frequent itemset mining task can be stated as follows: Let I be a set of distinct attributes,
also called items. Let D be a database of transactions, where each transaction has a unique
identifier (tid) and contains a set of items. A set of items is called an itemset where for each
nonnegative integer k, an itemset with exactly k items is called a k-itemset. The tidset of an
itemset C corresponds to the set of all transaction identifiers (tids) where the itemset C occurs.
The support count of C, is the number of transactions of D in which it occurs as a subset.
Similarly, the support of C, denoted by σ(C), is the percentage of transactions of D in which it
occurs as a subset. The itemsets that meet a user specified minimum support are referred to as
frequent itemsets. A frequent itemset is maximal if it is not subset of any other frequent itemset.

2.1 Mining Distributed Databases

A common approach for mining distributed databases is the centralized one, in which all data
is moved to a single central location and then mined. Another common approach is the local

one, where models are built locally in each site, and then moved to a common location where
they are combined. The later approach is the quickest but often the least accurate, while the
former approach is more accurate but generally quite expensive in terms of time required. In
the search for accurate and efficient solutions, some intermediate approaches have been pro-
posed [1, 3, 6, 15]. In [1] three distributed mining approaches were proposed. The COUNT

DISTRIBUTION algorithm is a simple distributed implementation of APRIORI [2]. All sites
generate the entire set of candidates, and each site can thus independently get local support
counts from its partition. At each iteration the algorithm does a sum reduction operation to
obtain the global support counts by exchanging local support counts with all other sites. Since
only the support counts are exchanged among the sites, the communication overhead is reduced.
However, it performs one round of communication per iteration (note that synchronization is
implicit in communication). The DATA DISTRIBUTION algorithm generates disjoint candidate
sets on each site. However, to generate the global support counts, each site has to scan the entire
database (its local partition and all remote ones) in all iterations of the algorithm. Hence this ap-
proach suffers from high I/O overhead. The CANDIDATE DISTRIBUTION algorithm partitions
the candidates during each iteration, so that each site can generate disjoint candidates indepen-
dently of the other sites, but it still requires one round of communication per iteration. In [15]
two distributed algorithms were presented, PARECLAT and PARMAXECLAT. Both algorithms
are based on the concept of equivalence classes. Each equivalence class corresponds to a sub-
tree in the search space for frequent itemsets, and they can be processed asynchronously on each
site. PARECLAT outperforms DATA, COUNT, and CANDIDATE DISTRIBUTION algorithms for
more than one order of magnitude. PARMAXECLAT outperforms PARECLAT, but it searches
only the maximal frequent itemsets, instead of all frequent itemsets.

These techniques are devised to scale up a given algorithm (e.g., APRIORI, ECLAT, etc.).

Data is distributed (or in some cases, replicated) among different sites and a data mining algo-
rithm is executed in parallel on each site. These approaches do not take into account the possible
distributed nature of the data. Some assume a high-speed network environment and perform ex-
cessive communication operations. These approaches are not efficient when the databases are
geographically distributed.

2.2 Mining Dynamic Databases

Some recent effort has been devoted to the problem of incrementally mining frequent item-
sets [11, 12, 13, 4, 5, 9] in dynamic databases. Some of these algorithms cope with the problem
of determining when to update the current model of frequent itemsets, while others update the
model after an arbitrary number of updates [13]. To decide when to update, Lee and Che-
ung [11] propose the DELI algorithm, which uses statistical sampling methods to determine
when the current model is outdated. A similar approach proposed by Ganti et al [9] monitors
changes in the data stream. An efficient incremental algorithm, called ULI, was proposed by
Thommas [12] et al. ULI strives to reduce the I/O requirements for updating the set of frequent
itemsets by maintaining the previous frequent itemsets and the negative border [?] along with
their support counts. The whole database is scanned just once, but the incremental database
must be scanned as many times as the size of the longest frequent itemset.

3 Parallel and Distributed Incremental Mining

In this section we will describe our parallel and distributed incremental mining algorithms.
Specifically, the idea is that within a local domain one can resort to parallel mining approaches
(either within a node or within a cluster) and across domains one can resort to distributed mining
approaches (across clusters). The key distinction between the two scenarios being the cost of
communication. Below we first give the problem statement.

3.1 Problem Definition

Using D as a starting point, a set of new transactions d+ is added and a set of old transactions
d− is removed, forming the dynamic database ∆ (i.e., ∆ = (D ∪ d+) − d−). Let sD be the
minimum support used when mining D, and FD be the set of frequent itemsets obtained. Let
Π be the information kept from the current mining that will be used in the next incremental
mining operation. In our case, Π consists of FD (i.e., all frequent itemsets, along with their
support counts, in D). An itemset C is frequent in ∆ if its support is no less than s∆. Note
that an itemset C not frequent in D, may become a frequent itemset in ∆ (defined as emerged

itemset). If a frequent itemset in D remains frequent in ∆ it is called a retained itemset.
The database ∆ can be divided into n partitions, δ1, δ2, ..., δn. Each partition δi is assigned

to a site Si. Let C.sup and C.supi be the respective support counts of C in ∆ and δi. We will
call C.sup the global support count of C, and C.supi the local support count of C in δi. For a
given minimum support s∆, C is global frequent if C.sup ≥ s∆× | ∆ |; correspondingly, C is
local frequent at δi, if C.supi ≥ s∆× | δi |. C is a high-contrast frequent itemset if it is global
frequent, and if its local support counts differ meaningfully accross each partition δi. The set of
all maximal global frequent itemsets is denoted as global MFI∆, and the set of maximal local
frequent itemsets at δi is denoted as MFIδi . The task of mining frequent itemsets in distributed
and dynamic databases is to find F∆ (i.e., all global frequent itemsets in ∆), with respect to a
minimum support s∆ and, more importantly, using Π and minimizing access to D (the original
database) to enhance the algorithm performance.

3.2 The ZIGZAG Incremental Algorithm

In this section we briefly describe the ZIGZAG [13] incremental algorithm (sequential) that we
use as a basis for our parallel and distributed incremental algorithms.

Almost all algorithms for mining frequent itemsets use the same procedure − first a set of
candidates is generated, the infrequent ones are pruned, and only the frequent ones are used
to generate the next set of candidates. Clearly, an important issue in this task is to reduce the
number of candidates generated. An interesting approach to reduce the number of candidates
is to first find MFI∆. Once MFI∆ is found, it is straightforward to obtain all frequent itemsets
(and their support counts) in a single database scan, without generating infrequent (and unnec-
essary) candidates. This approach works because the downward closure property (all subsets
of a frequent itemset must be frequent). The number of candidates generated to find MFI∆ is
much smaller than the number of candidates generated to directly find all frequent itemsets. The
maximal frequent itemsets has been successfully used in several data mining tasks, including
incremental mining of dynamic databases [13, 14].

An efficient incremental algorithm for mining dynamic databases named ZIGZAG was pro-
posed in [13]. The main idea is to incrementally compute MFI∆ using the previous knowledge
Π. This avoids the generation and testing of many unnecessary candidates. Having MFI∆ is suf-
ficient to know which itemsets are frequent; their exact support are then obtained by examining
d+, d− and using Π, or, where this is not possible, by examining ∆.

ZIGZAG employs a backtracking search to find MFI∆. Backtracking algorithms are useful
for many combinatorial problems where the solution can be represented as a set I = {i0, i1, ...},
where each ij is chosen from a finite possible set, Pj . Initially I is empty; it is extended one
item at a time as the search space is traversed. The length of I is the same as the depth of the
corresponding node in the search tree. Given a k-candidate itemset, Ik = {i0, i1, ..., ik−1}, the
possible values for the next item ik comes from a subset Rk ⊆ Pk called the combine set. If y ∈
Pk−Rk, then nodes in the subtree with root node Ik = {i0, i1, ..., ik−1, y} will not be considered
by the backtracking algorithm. Each iteration of the algorithm tries to extend Ik with every item

x in the combine set Rk. An extension is valid if the resulting itemset Ik+1 is frequent and is
not a subset of any already known maximal frequent itemset. The next step is to extract the new
possible set of extensions, Pk+1, which consists only of items in Rk that follow x. The new
combine set, Rk+1, consists of those items in the possible set that produce a frequent itemset
when used to extend Ik+1. Any item not in the combine set refers to a pruned subtree. The
backtracking search performs a depth-first traversal of the search space.

The support computation employed by ZIGZAG is based on the associativity of itemsets,
which is defined as follows. Let C be a k-itemset of items C1 . . . Ck, where Ci ∈ I . Let L(C)

be its tidset and | L(C) | is the length of L(C) and thus the support count of C. According
to [10], any itemset is obtained by joining its atoms (individual items) and its support count
is obtained by intersecting the tidsets of its subsets. In the first step, ZIGZAG creates a tidset
for each item in d+, d−, and ∆. The main goal of incrementally computing the support is to
maximize the number of itemsets that have their support computed based just on d+ and d− (i.e.,
retained itemsets), since their support counts in D are already stored in Π. To avoid replicating
work already done before, ZIGZAG first verifies if the extension Il+1∪{y} is a retained itemset.
If so, its support can be computed by just using d+, d−, and Π, thereby enhancing the support
computation process. All these procedures are described in Figure 1. Next we describe how we
can parallelize the basic ZIGZAG algorithm.

Figure 1: The ZIGZAG Algorithm

3.3 Parallel Search for Maximal Frequent Itemsets

We now consider the problem of efficiently parallelizing the ZIGZAG algorithm. The main
idea of our parallel approach is to assign distinct backtrack trees to distinct processors. Fig-
ure 2 shows an illustrative example where minimum support is 30% (the framed itemsets are
the maximal frequent ones, while the cut itemsets are the infrequent ones). The two different
backtrack trees, each one is assigned to a different processor. Note that there is no dependence
among the processors, because each backtrack tree corresponds to a disjoint set of candidates.
Since each processor can proceed independently there is no synchronization while searching for
maximal frequent itemsets. To achieve a suitable level of load-balancing, the backtrack trees

are assigned to the processors by using the idea of bitonic partitioning.

Bitonic Partitioning (Single Backtrack Tree): In [8] a new partitioning scheme, called
bitonic partitioning, for load balancing was proposed. This scheme can be applied to the prob-
lem here as well. This scheme is based on the observation that the sum of the workload due to
itemsets i and (2P − i− 1) is a constant:

wi + w2P−i−1 = n− i− 1 + (n− (2P − i− 1)− 1) = 2n− 2P − 1

We can therefore assign itemsets i and (2P − i− 1) as one unit with uniform work (2n− 2P −
1). If n mod 2P = 0 then perfect balancing results. The case n mod 2P 6= 0 is handled as
described in [8].

Bitonic Partitioning (Multiple Backtrack Trees): Above we presented the simple case of
where we only had a single backtrack tree. In general we may have multiple trees. Observe that
the bitonic scheme presented above is a greedy algorithm, i.e., we sort all the wi (the work load
due to itemset i), extract the itemset with maximum wi, and assign it to processor 0. Each time
we extract the maximum of the remaining itemsets and assign it to the least loaded processor.
This greedy strategy generalizes to the multiple backtrack trees as well, the major difference
being work loads in different trees may not be distinct.

Once each processor has the MFI, the supports of the subsets are counted in parallel in much
the same way as the local MFI was generated. In this case, a task corresponds to finding the
support count of all frequent subsets.

Figure 2: Backtrack Trees for Items A and B on ∆

3.4 Parallel and Distributed Incremental Algorithm

The MFI search employed by ZIGZAG is very efficient, but it can only be applied when the
dynamic database is centralized. Now we will explain how we can extend ZIGZAG for mining

distributed databases. We first present Lemma 1, which is the basic theoretical foundation of
our approach.

Lemma 1 − A global frequent itemset must be local frequent in at least one partition.
Proof. − Let C be an itemset. If C.supi < s∆× | δi | for all i = 1, ..., n, then C.sup < s∆× |
∆ | (since C.sup =

∑n
i=1 C.supi and | ∆ |= ∑n

i=1 | δi |), and C cannot be globally frequent.
Therefore, if C is a global frequent itemset, then it must be local frequent in some partition δi.
�

In the first step each site Si independently performs a parallel and incremental search for
MFIδi , using ZIGZAG on its database δi. After all sites finish their searches, the result will
be the set of all local MFIs, {MFIδ1 , MFIδ2 , ... , MFIδi}. This information is sufficient for
determining all local frequent itemsets, and from Lemma 1, it is also sufficient for determining
all global frequent itemsets. The second step starts after all local MFIs were found. Each site
sends its local MFI to the other sites, and then they join all local MFIs. Now each site knows
the set

⋃n
i=1 MFIδi , which is an upper bound for MFI∆.

In the third step each site independently performs a top down incremental enumeration of
the potentially global frequent itemsets, as follows. Each itemset present in the upper bound
⋃n
i=1 MFIδi is broken into k subsets of size (k − 1). This process iterates generating smaller

subsets and incrementally computing their support counts until there are no more subsets to be
checked. At the end of this step, each site will have the same set of potentially global frequent
itemsets (and the support associated with each of these itemsets).

Lemma 2 − ⋃ni=1 MFIδi determines all global frequent itemsets. Proof. −We know from
Lemma 1 that if C is a global frequent itemset, so it must be local frequent in at least one
partition. If C is local frequent in some partition δl, then it must be determined by MFIδl , and
consequently by

⋃n
i=1 MFIδi . �

By Lemma 2 all global frequent itemsets were found, but not all itemsets generated in the
third step are global frequent (some of them are just local frequent). The fourth and final step
makes a reduction operation on the local support counts of each itemset, to verify which of them
are globally frequent in ∆. The process starts with site S1, which sends the support counts of its
itemsets (generated in the third step) to site S2. Site S2 sums the support count of each itemset
(generated in the third step) with the value of the same itemset obtained from site S1, and sends
the result to site S3. This procedure continues until site Sn has the global support counts of all
potentially global frequent itemsets. Then site Sn finds all itemsets that have support greater
than or equal to s∆, which constitutes the set of all global frequent itemsets, i.e., MFI∆.

We illustrate all steps of the algorithm execution in Figure 3. The transactions of ∆ (used
in the example of Figure 2) were distributed in two databases δ1 and δ2 (δ1 is located in site 1,
while δ2 is located in site 2). The value of the minimum support is 50%. In the first step each
site mines its local MFI. The result is MFIδ1 = {ABDE, BCE}, and MFIδ2 = {ACDE, BCD}. In

the next step, all sites exchange their local MFIs, so that each one can compute the upper bound
⋃n
i=1 MFIδi , which is {ABDE, BCE, ACDE, BCD}. Now, each site computes the support count

of each subset of each itemset in
⋃n
i=1 MFIδi . Some of the generated subsets at site Si are not

local frequents in di, but their support count must be computed because some of them must be
local frequent in other site, and therefore they can still be global frequent itemsets (i.e., ABE).
In the last step the global frequent itemsets are found by aggregating (sum reduction operation)
the local counts of each local frequent itemset.

Figure 3: Overall Process of Distributed Mining

There are two ways of doing distributed mining. The first is to do it within a cluster or a
local area network. In this case, a site corresponds to a single host with its own database, which
can compute the local MFI using the bag of tasks approach found in section 3.3. It can then
communicate with the other hosts in the cluster or LAN according to the algorithm above to
determine the global frequent itemsets.

The second way of doing distributed mining is to do it across clusters. In this case, a site
corresponds an entire cluster, and each cluster has its own database that is visible to all of the
nodes within that cluster. Instead of assigning distinct backtrack trees to distinct processors,
they are assigned to distinct nodes within the cluster. The nodes send their results to the leader
node, which then generates the local MFI. The leader then communicates with the leaders of
other clusters to generate

⋃n
i=1 MFIδi .

3.5 Interactive Issues

3.5.1 High-Contrast Frequent Itemsets

An important issue when mining distributed databases is to understand the differences between
the databases. An effective way to understand such differences is to find the high-contrast

frequent itemsets. The support counts of such itemsets vary significantly accross different
databases. We use the well-established notion of entropy to detect how the support count of
a given frequent itemset is distributed accross the databases [7]. For a random variable, the
entropy is a measure of the non-uniformity of its probability distribution. Let X be a global fre-
quent itemset. The value pX(i) = X.supi

X.sup
is the probability of occurrence of X in δi.

∑n
i=1 pX(i)

= 1, and H(X) = −∑n
i=1(pX(i) × log(pX(i))) is a measure of how the local support counts

of X is distributed accross the different databases. Note that 0 ≤ H(X) ≤ log(n), and so
0 ≤ E(X) = log(n)−H(X)

log(n)
≤ 1. If E(X) is greater than or equal to a given minimum entropy

threshold, then X is classified as high-contrast frequent itemset.

3.5.2 Query Response Time

One of the goals of the distributed mining algorithm is to minimize response time to a query for
the global frequent itemsets in an dynamic, distributed database. Since the database is dynamic,
each site is incrementally updating its local frequent itemsets. The time it takes to update the
local frequent itemsets is proportional to B =| d+ | + | d− |, that is to say, the size of a block of
differences. We can view the updates to the database as a queue containing zero or more such
blocks. If a query arrives while a block is being processed, there cannot be a response until
the calculation of the local frequent itemsets is completed and used to find the global frequent
itemsets. An obvious approach to reducing response time is to decrease the size ofB. However,
because of overhead, the time it takes to do two increments of size B is longer than the time it
takes to do a single increment of size 2 × B. So there is a tradeoff: The larger B is, the more
up-to-date global frequent model∆ will be, since it incorporates a greater number of changes to
the database, but the longer the response time to the query will be.

3.6 Discussions

All extant incremental mining algorithms make use of the negative border [11] to perform the
incremental operation. The basic idea is to keep the negative border up-to-date as the database
is updated. As shown in [13], the size of the negative border is typically much larger than the
size of MFI∆. So updating the negative border requires many more candidates to be processed,
incurring computational and I/O overhead. By updating MFI∆, we process fewer candidates
than other approaches.

Almost all distributed algorithms for frequent itemset mining (CD [1], FDM [3], and
DMA [6]) require a round of communication in every iteration of the algorithm. However, syn-
chronization is implicit in communication, and therefore these algorithms suffer from excessive
communication overhead. Our approach overcomes the problem of communication overhead
by making use of maximal frequent itemsets. Each site can independently generate its local
MFI, so no communication is needed during this search. After all local MFIs are found, only
one round of communication is performed in order to build the upper bound. Again, each site

can independently enumerate the local frequent itemsets, and after all local frequent itemsets are
found, only one reduction operation is needed to find the global frequent itemsets. Therefore, by
making use of maximal frequent itemsets, our distributed algorithm can asynchronously mine
the frequent itemsets.

4 Experimental Evaluation

Our experimental evaluation was carried out on two clusters. The first cluster consists of dual
PENTIUM III 1Ghz nodes with 1GB of main memory Red Hat Linux 7.1. The second cluster
consists of single PENTIUM III 933 MHz nodes with 512 MB of memory running Red Hat
Linux 7.3. We further partitioned each cluster into two virtual clusters for a total of four clus-
ters. We assume that each database is distributed between the clusters, and that each node in the
cluster has access to its cluster’s portion of the database. Within each cluster, we have imple-
mented the parallel program using the MPI message-passing library (MPICH over GM 1), and
for communication between clusters we use sockets.

We used real and synthetic databases for testing the performance of our algorithm. The
WPortal database is generated from the click-stream log of a large Brazilian web portal, and
the WCup database is generated from the click-stream log of the 1998 World Cup web site,
which is publicly available at ftp://researchsmp2.cc.vt.edu/pub/worldcup/. We scanned each log
and produced a respective transaction file, where each transaction is a session of access to the
site by a client. Each item in the transaction is a web request. Not all web requests were turned
into items; to become an item, the request must have three properties: (1) the request method
is GET; (2) the request status is OK; and (3) the file type is HTML. A session starts with a
request that satisfies the above properties, and ends when there has been no click from the client
for 30 minutes. All requests in a session must come from the same client. We also used a
synthetic database (also available from IBM Almaden), which have been used as benchmarks
for testing previous mining algorithms. This database mimics the transactions in a retailing
environment [2].

Table 1 shows the characteristics of the real databases used in our evaluation. It shows the
number of items, the average transaction length, the number of transactions, and the size of each
database. Each database was partitioned into two equal halves, and each halve was placed on a
separate cluster.

1www.myricom.com

Database #Items Avg. Length #Transactions Size
WPortal 3,183 4 7,786,137 428MB
WCup 5,271 8 7,618,927 645MB

T5I2D8000K 2,000 10 8,000,000 1,897MB

Table 1: Database Characteristics.

4.1 Intra-Cluster Evaluation

4.1.1 Performance Comparison

Figure 4 shows the execution times obtained for different databases, and parallel and incremen-
tal configurations. As we can see, better execution times are obtained when we combine both
parallel and incremental approaches. Furthermore, when the parallel configuration is the same,
the execution time is better for smaller block sizes (since the database is smaller). The improve-
ments obtained on the real databases are not so impressive as the improvement for the synthetic
one. The reason is that the real database has a skewed data distribution, and therefore the par-
titions of the real databases have a very different set of frequent itemsets (and therefore very
different local MFIs). On the other hand, the skewness of the synthetic data is very low, there-
fore each partition of the synthetic database is likely to have a similar set of frequent itemsets.
From the experiments in the synthetic database we observed that

⋃n
i=1 MFIδi (i.e., the upper

bound) is very similar to each local MFI. This means that the set of local frequent itemsets is
very similar to the set of global frequent itemsets, and therefore few infrequent candidates are
generated by each processor.

10

100

1000

1 2 3 4 5 6 7 8

E
la

p
s
e
d
 T

im
e
 (

s
e
c
s
)

Processors

WCup - 0.5%

100%
20%
10%

10

100

1000

1 2 3 4 5 6 7 8

E
la

p
s
e
d
 T

im
e
 (

s
e
c
s
)

Processors

WPortal - 0.005%

100%
20%
10%

10

100

1000

10000

1 2 3 4 5 6 7 8

E
la

p
s
e
d
 T

im
e
 (

s
e
c
s
)

Processors

T5I2D8000K - 0.5%

100%
20%
10%

1

10

100

1000

1 2 3 4 5 6 7 8

E
la

p
s
e
d
 T

im
e
 (

s
e
c
s
)

Processors

WCup - 1%

100%
20%
10%

1

10

100

1000

1 2 3 4 5 6 7 8

E
la

p
s
e
d
 T

im
e
 (

s
e
c
s
)

Processors

WPortal - 0.01%

100%
20%
10%

1

10

100

1000

1 2 3 4 5 6 7 8

E
la

p
s
e
d
 T

im
e
 (

s
e
c
s
)

Processors

T5I2D8000K - 1.0%

100%
20%
10%

Figure 4: Total Execution Times on Different Databases.

4.1.2 Improvements from Incremental Mining

We also investigated the performance of our algorithm in experiments for evaluating the speedup
of different incremental configurations. In this experiment, we first mined a fixed size database,
and then we performed the incremental mining for different increment sizes (5% to 20%). In
order to evaluate only the incremental performance, we used the incremental algorithm with
only one processor (Actually, we also varied the number of processors, but the speedup was very
similar for different number of processors, so e show only the results regarding one processor).

Figure 5 shows the speedup numbers of our incremental algorithm. Note that the speedup is
in relation to re-mining the entire database. As is expected, the speed is inversely proportional
to the size of the increment. This is because the size of the new data coming in is smaller.
Also note that better speedups are achieved by greater minimum supports. We observed that,
for the databases used in this experiment, the proportion of retained itemsets (itemsets that are
computed by examining only d+ and Π) is larger for greater minimum supports.

1

2

3

4

5

6

7

68101214161820

S
p
e
e
d
u
p

Block Size (%)

WCup

0.5%
1.0%

1

2

3

4

5

6

7

8

9

68101214161820

S
p
e
e
d
u
p

Block Size (%)

WPortal

0.005%
0.01%

1

2

3

4

5

6

7

8

9

10

68101214161820

S
p
e
e
d
u
p

Block Size (%)

T5I2D8000K

0.5%
1.0%

Figure 5: Speedups on Different Incremental Configurations.

4.2 Inter-Cluster Evaluation

We also performed several sets of experiments in a broader scenario involving several clusters.
The first set involved finding the number of transactions that were processed and incorporated
into the global model MFI∆ when we varied certain parameters. The second set examined how
the query response time was affected the block size and the query arrival time.

4.2.1 Transactions Processed

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

30 35 40 45 50 55 60

Tr

an
sa

ct
io

ns

Deadline (secs)

WPortal - 0.01% - 1 node (2 clusters)

10%
20%
40%

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

10 15 20 25 30 35 40

Tr

an
sa

ct
io

ns

Deadline (secs)

WCup - 1.0% - 1 node (2 clusters)

10%
20%
40%

Figure 6: Number of transactions processed.

The first experiment we conducted was to examine how the size of a block, the number of nodes
used in each cluster, and the time at which a query arrives affects the amount of data used to
build the global model MFI∆. For the wportal database we used a minimum support of 0.01%
and for the wcup database we used a minimum support of 1.0%. The results all have similar
trends, and two example cases can be seen in figure 6. The X-axis represents the time elapsed
from when the mining began until the query arrived (the deadline), and the Y-axis represents the
number of transactions that are incorporated into the global model MFI∆. The lines on the graph
represent different values of the block sizeB, which is given here as percentages of the database
on each cluster. The graphs show that the more time that elapses before the query arrives, the

more data that is incorporated into the model, which is to be expected. It also shows that the
as the block size decreases, fewer transactions can be processed before the query arrives. This
is due to the fact there is more overhead involved in processing a large number of small blocks
than there is in processing a small number of large blocks.

4.2.2 Query Response Time

0

10

20

30

40

50

60

70

80

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 1 node (2 clusters)

10%
20%
40%

10

20

30

40

50

60

70

80

90

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 2 nodes (2 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

40

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 4 nodes (2 clusters)

10%
20%
40%

5

10

15

20

25

30

35

40

45

50

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 1 node (4 clusters)

10%
20%
40%

10

15

20

25

30

35

40

45

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 2 nodes (4 clusters)

10%
20%
40%

5

10

15

20

25

30

35

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 4 nodes (4 clusters)

10%
20%
40%

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 1 node (2 clusters)

10%
20%
40%

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 2 nodes (2 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 4 nodes (2 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 1 node (4 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 2 nodes (4 clusters)

10%
20%
40%

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 4 nodes (4 clusters)

10%
20%
40%

Figure 7: Query Response Time using Equal Block Sizes.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 1 node (2 clusters)

3.5% - 6.5% (10% total)
7% - 13% (20% total)
14%- 26% (40% total)

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 2 nodes (2 clusters)

3.5% - 6.5% (10% total)
7% - 13% (20% total)

14% - 26% (40% total)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 4 nodes (2 clusters)

3.5% - 6.5% (10% total)
7% - 13% (20% total)

14% - 26% (40% total)

Figure 8: Query Response Time using Different Block Sizes.

In the next set of experiments we focused on the query response time, that is to say, the amount
of time a user must wait before the global model is computed. For this experiment we varied the
block size B (in these experiments we assume that each cluster use the same block size) and the
time at which the query arrives. The results can be seen in figure 7. The X-axis again represents
the time at which the query arrives, and the Y-axis represents the time spent waiting for the
global model to be computed. These graphs show that as B decreases, the time to wait for a
response also decreases. However, the time at which a query arrives affects the waiting time in
a seemingly random manner. This is because a query arrives at some random point during the
processing of a block. The time remaining to compute the local frequent itemsets is therefore
a random number. The graphs above show the query response time averaged over five runs,
and the vertical bars represent the variance in the runs. This set of experiments, in conjunction
with the first set, clearly show the trade-off between block size and query response time: As
the block size increases, the number of transactions processed also increases, but the response
time increases as well. Figure 8 shows the same experiment when different block sizes across
clusters are allowed. The basic idea is that smaller response times can be obtained by assigned
larger blocks to the less powerfull cluster. The local model in this cluster will be updated less
frequently, but in response, smaller query response times can be obtained by this approach. We
can comprove this by comparing the results in Figure 8 against the respective result in Figure 7.

4.2.3 Communication

We also performed a set of experiments to analyze the communication overhead imposed by our
algorithm. In particular we examined the number of bytes transferred between clusters when
we varied the minimum support, the block size B, and the number of clusters involved in the
computation. The results can be seen in figure 9. As is expected, as the minimum support
decreases, the number of candidates will increase, and will therefore increase the number of
bytes that must be transferred between the clusters, since our algorithm must exchange the
support counts of every candidate processed. Also, as the block size increases, the amount of
communication decreases. The reason is that for smaller block sizes the number of candidates

processed tends to be greater (assuming the same minimum support). Finally, the amount of
communication required increases when more clusters are involved in the process. However,
the increasing factor is not linear because the data-skewness also increases when more clusters
are involved in the process, and then the number of candidates processed is increased as well.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

C
om

m
un

ic
at

io
n

(b
yt

es
)

Minimum Support (%)

WPortal

10% (2 clusters)
20% (2 clusters)
40% (2 clusters)
10% (4 clusters)
20% (4 clusters)
40% (4 clusters)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

m
un

ic
at

io
n

(b
yt

es
)

Minimum Support (%)

WCup

10% (2 nodes)
20% (2 nodes)
40% (2 nodes)
10% (4 nodes)
20% (4 nodes)
40% (4 nodes)

Figure 9: Communication Overhead.

4.2.4 High-Contrast Itemsets

The last set of experiments are regarding high-contrast frequent itemsets. We utilized three
databases: WPortal, WCup, and also a high-skewd synthetic database. The synthetic database
was generated in the following way. We first generated four different syntethic databases:
T10I2D2000K, T10I4D2000K, T10I6D2000K and T10I8D2000K. Next, each one of these
databases was assigned to a different cluster. In that way, we ensure that this distributed database
contains high-skewed data.

We varied three parameters: the minimum support, the number of clusters involved in the
process, and the minimum entropy. Figure 10 shows the results obtained in each database. As
we can observe, very different results were obtained from each database. The percentage of
high-contrast frequent itemsets is interesting here because it to some extents reveals the skew-
ness of the database. From the experimental result, we know that WCup database is more
skewed than WPortal dataibase, considering given the same support thresholds for these two
databases, WCup will give a much higher percentage of high-contrast frequent itemsets. Usu-
ally the percentage of high-contrast frequent itemsets will be decremented when minimum sup-
port threshold going up. This is quite understandable considering when the support threshold is
low, there will be a large number of global frequent itemsets generated, and quite a lot itemsets
amongest these itemsets become global frequent only because they are frequent highly enough
local in some site. By contrast, when the support threshold getting higher, it’s getting harder for
a local frequent itemset to become global frequent, which means a loss of high-contrast frequent
itemsets. Accordingly there is a higher proportion of high-contrast frequent itemsets in the for-
mer scenario. Meanwhile, the more clusters on which the data distributed, the greater possiblily
of the skewness of the data. This is verified by the experimental data. It’s interesting to notice

that for the high-skewed synthetic data, when the support threshold incremented from 0.05 to
0.1, the percentage of high-contrast frequent itemsets did not increase as expected. We guess
this can be attributed to the high skewness of the data. We surmise for such data there exists
some threshold for our claim to take effect. Take our synthetic data as an example, the thresh-
old value is around 0.1. Before this threshold, when we raised the support value, both of the
high-contrast frequent itemsets and the global frequent itemsets became less, but the loss of the
former was dominated by the latter, eventually leading to a raised percentage of high-contrast
frequent itemsets.

0
5

10
15
20
25
30
35
40
45
50
55

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

P
e
rc

e
n
ta

g
e
 o

f
H

ig
h
-C

o
n
tr

a
s
t
It
e
m

s
e
ts

Minimum Support (%)

WPortal

0.1 (2 clusters)
0.02 (2 clusters)

0.1 (4 clusters)
0.02 (4 clusters)

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 o

f
H

ig
h
-C

o
n
tr

a
s
t
It
e
m

s
e
ts

Minimum Support (%)

WCup

0.1 (2 clusters)
0.02 (2 clusters)

0.1 (4 clusters)
0.02 (4 clusters)

0

10

20

30

40

50

60

70

80

90

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
H

ig
h
-C

o
n
tr

a
s
t
It
e
m

s
e
ts

Minimum Support (%)

High-Skewed Synthetic Data

0.1 (2 clusters)
0.05 (2 clusters)
0.1 (4 clusters)

0.05 (4 clusters)

Figure 10: High-Contrast Frequent Itemsets.

5 Conclusions

In this paper we considered the problem of mining frequent itemsets on dynamic, distributed
databases in different parallel and distributed environments. We presented an efficient dis-
tributed and parallel incremental algorithm to deal with this problem. In particular we present
techniques to minimize the response time to a query for the global set of frequent itemsets,
as well as to find high-contrast frequent itemsets. Our experiments examined the trade-offs in-
volved in minimizing the query response time (whether to sacrifice query response time in order
to incorporate more transactions in the model), the amount of data transferred between clusters,
and how the distribution of the data affected the number of high-contrast frequent itemsets.

Our future work involves using sampling techniques to minimize the query response time
and how to minimize query response time in wide-area networks, were communication latencies
tend to be relatively large.

References

[1] R. Agrawal and J. Shafer. Parallel mining of association rules. In IEEE Trans. on Knowl-

edge and Data Engg., volume 8, pages 962–969, 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the

20th Int’l Conf. on Very Large Databases, SanTiago, Chile, June 1994.

[3] D. Cheung, J. Han, V. Ng, A. Fu, , and Y. Fu. A fast distributed algorithm for mining
association rules. In 4th Intl. Conf. Parallel and Distributed Info. Systems, 1996a.

[4] D. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of discovered association rules
in large databases: An incremental updating technique. In Proc. of the 12th Int’l. Conf. on

Data Engineering, February 1996.

[5] D. Cheung, S. Lee, and B. Kao. A general incremental technique for maintaining discov-
ered association rules. In Proc. of the 5th Int’l. Conf. on Database Systems for Advanced

Applications, pages 1–4, April 1997.

[6] D. Cheung, V. Ng, A. Fu, , and Y. Fu. Efficient mining of association rules in distributed
databases. In IEEE Trans. on Knowledge and Data Engg., volume 8, pages 911–922,
1996.

[7] D. Cheung and Y. Xiao. Effect of data skewness in parallel mining of association rules. In
Proc. of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
48–60, New York, USA, August 1998.

[8] M. Cierniak, M. Zaki, and Wei Li. Compile-time scheduling algorithms for a heteroge-
neous network of workstations. In The Computer Journal, volume 40, pages 356–372.

[9] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and monitoring evolving data.
In Proc. of the 16th Int’l Conf. on Data Engineering, pages 439–448, San Diego, USA,
2000.

[10] K. Gouda and M. Zaki. Efficiently mining maximal frequent itemsets. In Proc. of the 1st

IEEE Int’l Conference on Data Mining, San Jose, USA, November 2001.

[11] S. Lee and D. Cheung. Maintenance of discovered association rules: When to update? In
Research Issues on Data Mining and Knowledge Discovery, 1997.

[12] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm for the incre-
mental updation of association rules. In Proc. of the 3rd ACM SIGKDD Int’l Conf. on

Knowledge Discovery and Data Mining, August 1997.

[13] A. Veloso, W. Meira Jr., M. B. de Carvalho, B. Pôssas, S. Parthasarathy, and M. Zaki.
Mining frequent itemsets in evolving databases. In Proc. of the 2nd SIAM Int’l Conf. on

Data Mining, Arlington, USA, May 2002.

[14] A. Veloso, W. Meira Jr., M. B. de Carvalho, B. Rocha, S. Parthasarathy, and M. Zaki.
Efficiently mining approximate models of associations in evolving databases. In Proc. of

the 6th Int’l Conf. on Principles and Practices of Data Mining and Knowledge Discovery

in Databases, Helsinki, Finland, August 2002.

[15] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New parallel algorithms for fast dis-
covery of association rules. Data Mining and Knowledge Discovery: An International

Journal, 4(1):343–373, December 1997.

