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In this paper, we extend the scope of mining association rules from traditional single-
dimensional intratransaction associations, to multidimensional intertransaction associations.
Intratransaction associations are the associations among items within the same transaction,
where the notion of the transaction could be the items bought by the same customer, the
events happened on the same day, and so on. However, an intertransaction association
describes the association relationships among different transactions, such as “if (company) A’s
stock goes up on day 1, B’s stock will go down on day 2, but go up on day 4.” In this case,
whether we treat company or day as the unit of transaction, the associated items belong to
different transactions. Moreover, such an intertransaction association can be extended to
associate multiple contextual properties in the same rule, so that multidimensional inter-
transaction associations can be defined and discovered. A two-dimensional intertransaction
association rule example is “After McDonald and Burger King open branches, KFC will open a
branch two months later and one mile away,” which involves two dimensions: time and space.
Mining intertransaction associations poses more challenges on efficient processing than
mining intratransaction associations. Interestingly, intratransaction association can be
treated as a special case of intertransaction association from both a conceptual and algorith-
mic point of view. In this study, we introduce the notion of multidimensional intertransaction
association rules, study their measurements—support and confidence—and develop algo-
rithms for mining intertransaction associations by extension of Apriori. We overview our
experience using the algorithms on both real-life and synthetic data sets. Further extensions
of multidimensional intertransaction association rules and potential applications are also
discussed.
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1. INTRODUCTION

The discovery of association rules is an important data mining problem.
The most often cited application of association rules is market basket
analysis using transaction databases from supermarkets. These databases
contain sales transaction records, each of which details items bought by a
customer in the transaction. Mining association rules is the process of
discovering knowledge such as

R1;80% of customers who bought diapers also bought beer.

which can be expressed as diapers f beer (20%, 80%), where 80% is the
confidence level of the rule, and 20% is the support level of the rule
indicating how frequently the customers bought both diapers and beer. In
general, an association rule takes the form X f Y (s, c), where X and Y
are sets of items, and s and c are support and confidence respectively. The
discovered knowledge can then be used in store floor planning, sales
promotions, etc.

Since the problem of mining association rules was introduced in Agrawal
et al. [1993], a large amount of work has been done in various directions,
including efficient, Apriori-like mining methods [Agrawal and Srikant
1994; Klemettinen et al. 1994; Savasere et al. 1995; Park et al. 1995; Park
et al. 1996; Toivonen 1996; Zaki et al. 1997; Fang et al. 1998], mining
generalized, multilevel, or quantitative association rules [Srikant and
Agrawal 1995; Srikant and Agrawal 1996; Han and Fu 1995a; Fukuda et
al. 1996a; Fukuda et al. 1996b; Miller and Yang 1997; Lent et al. 1997;
Kamber et al. 1997], association rule mining query languages [Meo et al.
1996; Tsur et al. 1998], constraint-based rule mining [Ng et al. 1998;
Srikant et al. 1997; Tsur et al. 1998; Baralis and Psaila 1997; Han and Fu
1995b], incremental maintenance of discovered association rules [Cheung
et al. 1996a], parallel and distributed mining [Agrawal and Shafer 1996;
Han et al. 1997; Cheung et al. 1996b], mining correlations and casual
structures [Brin et al. 1997; Silverstein et al. 1998], cyclic and interesting
association rule mining [Özden et al. 1998; Ramaswamy et al. 1998], etc.
Despite these efforts, there is an important form of association rule which
is useful, but could not be discovered with the existing association rule
mining framework.

Association among items from different transactions. Taking stock
markets as an example, we can construct a share price movement database
as follows: each trading day has one record in the database which contains
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the counters whose prices are up for that day. Applying the association
rules as mentioned above, we can discover rules like

R91;When the prices of IBM and SUN go up, 80% of the time the price of
Microsoft increases on the same day.

While the association rule such as R91 reflects some relationship among
the prices, its role in price prediction is limited; and traders may be more
interested in the following type of rules:

R2;If the prices of IBM and SUN go up, Microsoft’s will most likely (80% of
the time) increases the next day.

Unfortunately, current association rule miners cannot discover this type of
rule because of the fundamental difference between rules like R2 and those
such as R1 and R91, which we will refer to as classical association rules. The
classical association rules express the associations among items within the
same transaction, such as items purchased by a customer or share price
movement within a day. On the other hand, rule R2 represents some
association relationship among the field values from different transaction
records. To distinguish these two types of associations, we name the
classical associations as intratransaction associations and the latter as
intertransaction associations.

It is worth pointing out that intertransaction associations cannot be
converted to intratransaction associations by simply transforming the data.
That is, no matter how we redefine transactions, intertransaction associa-
tions will remain associations across the boundaries of transactions. For
example, even if we transform the stock data so that transactions corre-
spond to the daily fluctuations of individual stocks, what Rule R2 expresses
will still be associations among transactions, since the ups and downs of
different stocks are in different transaction records.

Multidimensional context. In classical association rule mining,
records in a transaction database contain only items and are identified by
their TIDs. Although transactions occurred under certain contexts, such as
time, place, customers, etc., such contexts have been ignored in classical
association rule mining. When we talk about intertransaction association,
we are exploring the association of items along a certain dimension. If the
records in the transaction database are organized by transaction time, the
intertransaction association rules represent associations along the dimen-
sion of time. From the example of stock price movement mentioned earlier,
we can see that in addition to items, the time of transactions also contrib-
utes to the validation of associations, and such time intervals actually
convey a kind of contextual information.

Besides transaction time, other properties like spatial location also form
an interesting context for the existence of associations. Therefore, we can
enhance the traditional transaction model by associating records with a
number of attributes that describe the context where the transaction
happens. We call them dimensional attributes, because these attributes in
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fact form a multidimensional space, and transactions can be viewed as
points in such a space. These dimensional attributes can be of any kind as
long as they are meaningful to the applications. Time, distance, tempera-
ture, latitude, etc., are typical dimensional attributes. For a stock move-
ment database, the dimensional attributes could be trading date and
region. For a geographical database, we can have two numerical dimen-
sional attributes, x- and y-coordinates, with respect to a certain reference
point, and the items could be those objects that are of interest to a
particular application, such as shops, gas stations, fast food restaurants,
etc. In the current study, we assume that the domain of each dimensional
attribute is ordinal and can be divided into equal-sized intervals. For
instance, time can be divided into day, week, month, . . . and distance into
yard, mile, etc. For dimensional attributes with continuous values, we can
discretize them first in order to define such intervals to represent their
relative relationship. For example, we can order different colors as red,
green, blue, yellow, . . . in such a way that green is one unit away from red,
and blue is one unit away from green but two units away from red, and so
on.

With the definition of dimensional attributes, we can further extend
intertransaction association to multidimensional intertransaction as-
sociation. For example, if a database contains records about the timing
and location of buildings and facilities of a new city under development, we
may be able to find two-dimensional intertransaction association rules like

R4;After McDonald and Burger King open branches, KFC will open a
branch two months later and one mile away.

Since many real-world associations do happen in a certain context (in the
above example, time and spatial intervals convey a kind of contextual
information), integrating such multidimensional contextual information
into association rule mining is important. We believe that mining multidi-
mensional intertransaction association rules is a major data mining prob-
lem with broad applications. As discussed in Section 6, classical intratrans-
action association rule mining can be viewed as a special case of
intertransaction association rule mining from both a conceptual and algo-
rithmic point of view.

In this paper, we will give a formal definition of multidimensional
intertransaction association rules. As a first phase of study, we will also
compare two algorithms for mining one-dimensional intertransaction asso-
ciation rules from large databases.

The remainder of the paper is organized as follows. Section 2 defines
multidimensional intertransaction association rules and related measure-
ments. Section 3 describes the three phases in mining intertransaction
association rules: (i) data preparation, (ii) large-itemset mining, and (iii)
rule generation. Section 4 examines the large-itemset mining in detail and
presents two algorithms for this phase. Our experiments that evaluate the
performance of these algorithms on both synthetic and real-life data sets
are presented in Section 5. Section 6 discusses some closely related work
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and addresses some issues related to mining multidimensional intertrans-
action association rules. Section 7 concludes the paper with a brief discus-
sion of future work.

2. MULTIDIMENSIONAL INTERTRANSACTION ASSOCIATION RULES

In this section, we define single- and multidimensional intertransaction
association rules and related support and confidence measurements.

2.1 Single-Dimensional Intertransaction Association Rules

We start with single-dimensional intertransaction association rules for
easy explanation, and then extend them to the multidimensional context in
the next subsection.

Let ( 5 {i1, i2, . . . , is} denote a set of literals, called items. A
transaction database 7 is a set of transactions {t1, t2, . . . , tn}, where ti
(i 5 1, 2, . . . , n) is a subset of (. A single-dimensional mining space can
be represented by one dimensional attribute, whose domain is a finite
subset of nonnegative integers. Let ni 5 ^v& and nj 5 ^u& be two points in
the one-dimensional space, then a relative distance between ni and nj is
defined as D(ni, nj) 5 ^u 2 v&. In this paper, we also use D(ni) or simply
D i for D(n0, ni), where n0 is a reference point in the one-dimensional
space. Note that ni, D(ni), and Di can be used interchangeably with respect
to a reference point. We call an item ik, at the point D j in the one-
dimensional space, an extended item and denote it as D j(ik). In general,
the two extended items Di(ik) and D j(ik) are not equal if Di Þ D j. In a
similar fashion, we call a transaction tk, at the point D j in the one-
dimensional space, an extended transaction and denote it as D j(tk). The
set of all possible extended items, (e, is defined as a set of D j(ik) for any
ik [ (, at all points D j in the one-dimensional space. 7e is the set of all
extended transactions in the one-dimensional space. The reference point of
an extended transaction subset is defined to be the smallest D j among all
D j(tk) in this subset.

Example 2.1. A simple traditional database is transformed into a sin-
gle-dimensional extended transaction database as shown in Table I. Let
T9e 5 {D1(t2), D2(t3), D3(t4)}. Following the definition, the reference point
of T9e is D1, with which we say T9e contains a set of extended items {D0(c),
D0(d), D0(e), D1(a), D1(b), D2(a), D2(b), D2(c), D2(e)}. In other words, the
above set of extended items has D1 as its reference point.

Table I. A Transformed Single-Dimensional Extended Transaction Database
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With the above notations, we are now in a position to define single-
dimensional intertransaction association rules and related measurements.

Definition 2.1. A single-dimensional intertransaction association rule is
an implication of the form X f Y, where X , (e, Y , (e, and X ù Y 5 À.

Based on Definition 2.1, a rule that predicts stock price movement, such
as “if the price of stock ‘a’ increases one day, and the price of stock ‘c’
increases the next day, then most probably the price of stock ‘e’ will increase
on the fourth day,” can be expressed by the single-dimensional intertrans-
action association rule “D0(a), D1(c) f D3(e).”

Similar to intratransaction association rules, we use support and confi-
dence as two major rule measurements. Traditionally, the support of a rule
X f Y is the fraction of transactions that contain X ø Y over the whole
transactions, and the confidence of the rule is the fraction of transactions
containing X that also contain Y. That is, we can have the following
definition:

Definition 2.2. Given two subsets of (e, X, and Y, referencing to D0. Let
Txy be a set of extended transactions that contain X ø Y, and let Tx be a
set of extended transactions that contain X. The support and confidence of
a single-dimensional intertransaction association rule X f Y are sup-
port(X f Y) 5 uTxyu/ u7eu and confidence(X f Y) 5 uTxyu/ uTxu.

Note that, for intertransaction association rules, the above definition is
an approximation. To illustrate, let us look at the rule “D0(a), D1(c) f
D3(e).” If we apply the traditional method to the database in Table I, we get
the support and confidence, 1/5 and 1/3 respectively, where 5 is the total
number of transactions, and 3 is the number of transaction sets that
contain {D0(a), D1(c)}. But in fact, there are only 2 sets of transactions,
i.e., {D0(t1), D1(t2), D2(t3), D3(t4)} and {D1(t2), D2(t3), D3(t4), D4(t5)},
that possibly contain {D0(a), D1(c), D3(e)}. It seems unfair to take total
number of transactions “5” as the denominator to compute the support.
Similarly, for the confidence computation, although “3” sets of transactions
contain {D0(a), D1(c)}, only one of them is meaningful for {D0(a), D1(c),
D3(e)}. So the reasonable support and confidence of the rule shall be 1/(5-3)
and 1/(3-2) respectively. That is, the denominator used to compute the
support and confidence level should be smaller. The difference is deter-
mined by the span of intervals involved in the itemset. However, observing
that in most real databases, the total number of transactions is far larger
than the maximum transaction interval in a rule, the difference between
the above two calculations is actually very minor. Thus, we can still adopt
the traditional method to compute support and confidence for intertransac-
tion association rules.

Using the above approximation not only simplifies the computation of the
support level of itemsets, but also maintains the important monotonic
property of the support of itemsets. In other words, the support of an
itemset will not be larger than the support of any of its subsets. We like to
have the property, since it is the base of a large set of efficient association
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rule mining algorithms. If the denominator in the support computation
formula depends on the size of the itemset, this monotonic property will not
hold. It is worth pointing out that in order to maintain this monotonic
property, we will assume the database in consideration contains no “holes”
along the dimension. That is, there is a record in the database for every
dimensional value. For example, in the database in Table I, there is a
record for every date. In this study, we assume that there are no holes in
the database, since they can be either filled by transactions with null item
lists, or discarded by changing the value of the dimensional attribute.
Consider a stock price movement database: each record has the form (date,
stock-list), where stock-list contains those stocks whose prices are up
compared to the previous trading day. Although we may find that there are
certain holes in the database, i.e., no records for certain dates, based on the
domain knowledge, we know that there are two possible reasons that cause
such holes: either it is a holiday (no trading), or prices of all stocks dropped
that day.1 For the former case, the date should not be counted, since only
the trading day is meaningful for association mining. For the latter, we
need to insert a record for that trading day with a null item list, and, as a
result, we will have a stock price movement database with no holes. Each
record consists of an ID of the trading day and the stocks whose prices rise.

2.2 Multidimensional Intertransaction Association Rules

When increasing the number of dimensional attributes from 1 to m, we
come to a multidimensional mining space. In practice, there are a wide
range of application databases that can be viewed as multidimensional
transaction databases. For example, an urban development project can use
a two-dimensional transaction database, where the two dimensional at-
tributes are month and block number, and the item lists include the
buildings or facilities completed during the month in a particular block.

In general, a multidimensional space is a finite subset of Nm, where N is
the set of nonnegative integers. Each dimension is represented by a
dimensional attribute. A mapping function can be introduced which maps a
database transaction onto a point in the m-dimensional space. Let ni 5
^v1, v2, . . . , vm& and nj 5 ^u1, u2, . . . , um& be two points in the
m-dimensional space. The relative distance between ni and nj in the
m-dimensional space can be defined as D(ni, nj) 5 ^u1 2 v1, u2 2 v2, . . . ,
um 2 vm&, and the reference point of these two points is defined as
^min(u1, v1), min(u2, v2), . . . , min(um, vm)&.

Figure 1 depicts a two-dimensional extended transaction database with
two dimensional attributes x and y, whose domains have been discretized
into 5 and 4 equal-lengthed intervals respectively. There are totally four
items, a, b, c, and d, in the database. For simplicity, we also denote a point
in the two-dimensional space using Dx, y with respect to a certain reference

1In fact, there is another possible reason: missing data. That is, we do not have a trading
record for that day. We will leave the issue of handling missing data to further study for the
moment.
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point.2 The database contains extended transactions such as D0, 0(t1) 5
{D0, 0(a), D0, 0(b), D0, 0(c)}, D1, 0(t2) 5 {D1, 0(b)}, . . . , D4, 3(t20) 5
{D4, 3(a)}. Upon such an extended transaction database, the support and
confidence of the rule “D0, 0(a), D0, 1(c) f D1, 1(d)” are 2/20 and 2/3
respectively, since there are totally 3 extended transaction sets: {D0, 0(t1),
D0, 1(t6), D1, 1(t7)}, {D0, 2(t11), D0, 3(t16), D1, 3(t17)}, and {D2, 1(t8), D2, 2(t13),
D3, 2(t14)}, containing {D0, 0(a), D0, 1(c)}, and 2 containing {D0, 0(a), D0, 1(c),
D1, 1(d)}.

Multidimensional intertransaction association rules and related mea-
surements can be defined in a similar way as single-dimensional inter-
transaction association rules and related measurements, except that more
dimensional attributes get involved in describing the mining context.

3. MINING ONE-DIMENSIONAL INTERTRANSACTION ASSOCIATION
RULES

In this section, we give an overview of mining one-dimensional intertrans-
action association rules which can be divided into three phases: data
preparation, large extended itemset discovery, and association rule genera-
tion.

—Phase-1 (Data preparation) The transaction database is prepared for
mining from operational databases, and the major task is to organize the
transactions based on intervals of the dimensional attribute(s). For
example, to find the long-term movement regularities of stock prices
across different weeks (months), we need to transform daily price move-
ment into weekly (monthly) groups. After such transformation, each

2Recall that Di is used for a point ni in an m-dimensional space regarding a reference point.
The ( x, y) in Dx, y is used to index a point in a two-dimensional space.

Fig. 1. Graphical representation of a two-dimensional transaction database.
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record in the database will contain an interval value representing the
relative address from a reference point in the dimensional space, and a
list of items.

—Phase-2 (Large extended itemset discovery) In this phase, we find the set
of all extended itemsets whose supports are above a user-speci-
fied support threshold. A k-extended itemset is of the form {Dx1

(i1),
Dx2

(i2), . . . , Dxk
(ik)}, where item it (1 # t # k) appears at the point Dxt

in
the contextual space. For example, a three-extended itemset {D0(a),
D1(b), D3(c)} describes three items and their relative addresses along the
dimension. That is, taking a transaction containing item a as the
reference transaction, D1(b) represents an item b to be contained in a
transaction 1 unit distance away from the reference transaction, and
D3(c) represents an item c in a transaction 3 unit distances away from
the reference transaction.

To limit the search space, we set a maximum span threshold, maxspan,
along each dimension for a particular application. In a single-dimen-
sional case, it works like a sliding window; only those associations
covered by the window are considered. There are two reasons for this.
First, from the application viewpoint, we are often interested in the
relationships within a certain range, such as share prices going up within
a week (for investors seeking short-term profits), gas stations and fast-
food outlets within 50 miles, etc. A rule like “if IBM stock goes down,
SUN stock will go down 243 days later” is unlikely to inspire the
confidence of stock traders. Second, from the view point of computational
complexity, a threshold set reasonably will generate interesting results
within a reasonable time. As we see later, mining intertransaction
association rules is computationally much more complex than mining
intratransaction association rules, which is already computationally in-
tensive. Note that, with maxspan 5 0, the intertransaction association
rules degrade to the classical intratransaction association rules. Detailed
algorithms for generating large extended itemsets are described in the
following section.

—Phase-3 (Association rule generation) Using sets of large extended item-
sets, we can find the desired intertransaction association rules, the
generation of which is similar to that of the classical association rules
[Agrawal and Srikant 1994].

4. LARGE EXTENDED ITEMSET DISCOVERY PHASE

In this section, we describe two algorithms, E-Apriori and EH-Apriori, for
finding large extended itemsets by extension of Apriori [Agrawal and
Srikant 1994].

Let Lk represent the set of large k-extended itemsets, and Ck the set of
candidate k-extended itemsets. Both algorithms make multiple passes over
the database, and each pass consists of two phases. First, the set of all
large (k 2 1)-extended itemsets Lk21, found in the (k 2 1)th pass, is used
to generate the candidate extended itemset Ck. The candidate generation
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procedure ensures that Ck is a superset of the set of all large k-extended
itemsets. The algorithms now scan the database. For each list of consecu-
tive transactions, they determine which candidates in Ck are contained and
increment their counts. At the end of the pass, Ck is examined to check
which of the candidates are actually large, yielding Lk. The algorithms
terminate when Lk becomes empty.

As previously reported in Park et al. [1995], the processing cost of the
first two iterations (i.e., obtaining L1 and L2) dominates the total mining
cost. The reason is that, for a given minimum support, we usually have a
very large L1, which in turn results in a huge number of itemsets in C2 to
process. Mining intertransaction association rules results in a much larger
C2, as many additional two-extended itemsets such as {D0(a), D1(a)} will
be added.

In order to construct a significantly smaller C2, EH-Apriori adopts a
similar technique of hashing as Park et al. [1995] to filter out unnecessary
candidate two-extended itemsets. When the support of candidate C1 is
counted by scanning the database, EH-Apriori accumulates information
about candidate two-extended itemsets in advance in such a way that all
possible two-extended itemsets are hashed to a hash table. Each bucket in
the hash table consists of a number to represent how many extended
itemsets have been hashed to it thus far. Such a resulting hash table can be
used to greatly reduce the number of two-extended itemsets in C2.

In the following, we describe how E-Apriori and EH-Apriori generate
candidates and count their supports for one-dimensional intertransaction
association rules.

4.1 Candidate Generation

Pass 1. To generate candidate set C1 of 1-extended itemsets, for every
item we attach all possible relative addresses within the range of [0,
maxspan] in the one-dimensional space. That is:

C1 5 $$Dx~in!% u~in [ (! ` ~0 # x # maxspan!%

Starting from the transaction t at the reference point Ds, i.e., extended
transaction Ds(t), the transaction t9 at the point Ds1x in the dimensional
space, i.e., extended transaction Ds1x(t9), is scanned to determine whether
item in exists. If so, the count of Dx(in) increases by one. One scan of the
database will deliver the large set L1.

Pass 2. We generate a candidate two-extended itemset {D0(im), Dx(in)}
from any two large one-extended itemsets in L1, D0(im) and Dx(in), in this
way:

C2 5 $$D0~im!, Dx~in!% u~ x 5 0 ` im , in! ~ ~ x Þ 0!%

Note that, of any two-extended itemset in C2, the minimal relative
address is always 0.
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Pass k > 2. Given Lk21, the set of all large (k 2 1)-extended itemsets,
the candidate generation procedure returns a superset of large k-extended
itemsets. This procedure has two parts. In the join phase, we join Lk21
with Lk21. Let p 5 {Du1

(i1), Du2
(i2), . . . , Duk21

(ik21)} and q 5 {Dv1
( j1),

Dv2
( j2), . . . , Dvk21

( jk21)}, and we have

insert into Ck

select p.Du1~i1!, . . . , p.Duk21~ik21!, q.Dvk21~ jk21!

from Lk21 p, Lk21 q
where ~ p.Du1~i1! 5 q.Dv1~ j1!! ` . . . ` ~ p.Duk21~ik21! , q.Dvk21~ jk21!!

We define the comparison operators 5 and , between two extended
itemsets as follows:

Definition 4.1. Dxm
(im) 5 Dxn

(in), if and only if (1) im 5 in and (2) xm 5
xn.

Definition 4.2. Dxm
(im) , Dxn

(in), if and only if (1) xm , xn or (2) ( xm 5
xn) ` (im , in).

Next, in the prune phase, we delete all those extended itemsets in Ck
which have some (k 2 1)-subsets with the supports less than support. If a
subset’s minimum interval is not 0, it can be subtracted from all the items’
intervals, in order that they always start from 0.

4.2 Counting Support of Candidates

To facilitate the efficient support counting process, a candidate Ck of
k-extended itemsets is divided into k groups, with each group Go contain-
ing o number of items whose relative addresses (intervals) are 0 (1 # o #
k). For example, a candidate set of 3-extended itemsets

C3 5 $ $D0~a!, D1~a!, D2~b!%, $D0~c!, D0~d!, D2~d!%,
$D0~a!, D0~b!, D3~h!%, $D0~l !, D0~m!, D0~n!%,
$D0~ p!, D0~q!, D0~r!%

is divided into three groups:

G1 5 $ $D0~a!, D1~a!, D2~b!% %

G2 5 $ $D0~c!, D0~d!, D2~d!%, $D0~a!, D0~b!, D3~h!% %

G3 5 $ $D0~l !, D0~m!, D0~n!%, $D0~ p!, D0~q!, D0~r!% %.

Each group is stored in a modified hash-tree. Only those items with
interval 0 participate in the construction of this hash-tree. For instance, in
G2, only {D0(c), D0(d)} and {D0(a), D0(b)} enter the hash-tree. The
construction process is similar to that of Apriori [Agrawal and Srikant
1994]. The rest of the items, D2(d) and D3(h), are simply attached to the
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corresponding itemsets, {D0(c), D0(d)} and {D0(a), D0(b)} respectively, in
the leaves of the tree.

Upon reading one transaction of the database, every hash-tree is tested.
If one itemset is contained, its attached itemsets whose intervals are larger
than 0 will be checked against the successive transactions. In the above
example, if {D0(a), D0(b)} exists in the current extended transaction at the
point Ds, then the extended transaction Ds13(t9) will be scanned to see
whether it contains item h. If so, the support of 3-extended itemset {D0(a),
D0(b), D3(h)} will increase by 1. Figure 2 shows the algorithms E-Apriori
and EH-Apriori.

E-Apriori and EH-Apriori share the same procedures, except that in Pass
1, EH-Apriori hashes all two-itemsets, such as {D0(im), Dx(in)}, contained

Fig. 2. E-Apriori and EH-Apriori algorithms.
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in the current series of extended transactions into the corresponding
buckets of a HashTable, and prunes unnecessary two-extended itemsets
from C2 in pass 2, whose corresponding bucket values in the HashTable are
less than support. The hash function that we used is as below.

FUNCTION 4.1. Let “#buckets” denote the average number of hash buck-
ets allocated to two-itemsets which have the same relative address combina-
tion (e.g., (D0, Dx) is the address combination of 2-itemset {D0(im), Dx(in)});
we have

#buckets 5 TotalHashEntry/~maxspan 1 1!.

For each bucket, we assign “#itemsets” number of two-itemsets, where

#itemsets 5 ~TotalItem 3 TotalItem!/#buckets..

Given a two-itemset p 5 {D0(im), Dx(in)}, the hash function h( p) is
computed by the following formula:

h~ p! 5 Dx 3 #buckets 1 ~~~im 2 1! mod TotalItem!

3 TotalItem 1 ~in 2 1!!/#itemsets

Functions E-Apriori-Gen¼, E-Group¼, and E-Subset¼ are used to gen-
erate candidates, group candidates, and count support of candidates when
k . 2.

5. PERFORMANCE STUDY

To assess the performance of the proposed algorithms, we conducted a
series of experiments on both synthetic and real-life data. The method used
to generate synthetic data is described in Section 5.1, and Section 5.2
presents some experimental results from this. Results obtained from real
data are described in Section 5.3.

5.1 Generation of Synthetic Data

The method used by this study to generate synthetic transactions is similar
to the one used in Agrawal and Srikant [1994], with some modifications
noted below. Table II summarizes the parameters used and their settings.
For simplicity, we use itemset and extended itemset interchangeably in the
following.

Transaction sizes are typically clustered around a mean, and a few
transactions have many items. Typical sizes of large itemsets are also
clustered around a mean, with a few large itemsets having a large number
of items across different transactions.

We first generate a set L of the potentially large itemsets, which may
span different transactions, e.g., {D0(a), D1(b), D2(c)}, and then assign a
large itemset from L to corresponding transactions.
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The number of potentially large itemsets is set to uL u. A potentially large
itemset is generated by first picking the size of the itemset from a Poisson
distribution with mean equal to uI u. The maximum size of potentially large
itemsets is uMI u. Items and their relative addresses (intervals) in the first
large itemset are chosen randomly, where item is picked up from 1 to N,
and its interval is picked up from 0 to W. To model the phenomenon that
large itemsets often have common items and intervals, some fraction of
items and their intervals in subsequent itemsets are chosen from the
previous itemset generated. We use an exponentially distributed random
variable with mean equal to the correlation level to decide this fraction for
each itemset. The remaining items and their intervals are picked at
random. In the datasets used in the experiments, the correlation level is set
to 0.5. Having generated all the items and intervals for a large itemset, we
revise each of its intervals by subtracting the minimum interval value of
this large itemset. In this way, the minimum interval of each potentially
large itemset is always 0.

After generating the set L of potentially large itemsets, we then generate
transactions in the database. Each transaction is assigned a series of
potentially large itemsets. However, upon the generation of one transac-
tion, we must consider a list of consecutive ones starting from it, as items
in a large itemset may span different transactions. For example, after
selecting the large itemset {D0(a), D1(b), D2(c)} for current transaction
Ds(t), we should assign item a to t, item b to its next transaction t9 which
is one unit away, i.e., Ds11(t9), and item c to the transaction at the point
Ds12.

Before assigning items to a list of consecutive transactions, we should
determine the sizes of those transactions. The size of each transaction is
picked from a Poisson distribution with mean equal to uT u. The maximum
size of transactions is uMT u. Each potentially large itemset has a weight
associated with it, which corresponds to the probability that this itemset
will be picked. The weight is picked from an exponential distribution with
unit mean, and is then normalized so that the sum of the weights for all the
itemsets in L is 1. The next itemset to be put in the transaction is chosen
from L by tossing an uL u-sided weighted coin, where the weight for each
side is the probability of picking the associated itemset.

Table II. Parameters and Settings
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If the large itemset picked on hand does not fit in the current, or any one
of its successive transactions, it is put in these transactions anyway in half
the cases, and enters an unfit queue for the next transaction in the rest of
the cases. Each time, we pick itemsets from this queue first, according to
the first-in-first-out principle. Only when the queue is empty, do we
perform random selection from the set L. As in Agrawal and Srikant
[1994], we use a corruption level during the transaction generation to
model the phenomenon that all the items in a large itemset do not always
occur together. This corruption level for an itemset is fixed and is obtained
from a normal distribution, with mean 0.5 and variance 0.1.

We generated datasets by setting N 5 1000 and uL u 5 1000. We chose
four values for uT u: 4, 5, 6, and 7. The number of transactions was set from
60K to 100K. We also chose two values for uI u: 3 and 1.5. The corresponding
uMI u was set as 7 and 4, respectively. The maximum interval W was varied
from 0 to 4.

5.2 Experiments on Synthetic Data

We study the scalability of E-Apriori and EH-Apriori algorithms using
synthetic generated data. Four sets of experiments were conducted on a
Sun Ultra Sparc Workstation with a CPU clock rate of 143MHz and 64MB
main memory. We report the running performance of both algorithms in
terms of wall-clock time.

5.2.1 Basic Experiment. The first set of experiments studies the basic
behavior of the algorithms when the minimum support changes. The
results are shown in Figure 3.

As the minimum support increases, the execution times of both E-Apriori
and EH-Apriori decrease because of reduction in the total number of
candidate and large itemsets. Throughout the experiments, EH-Apriori is
always far superior than E-Apriori. For example, in Figure 3(a), when
minimum support is 0.7%, the mining time of EH-Apriori is about 38
seconds while that of E-Apriori is about 585 seconds. The former only needs
to spend 6.5% of the time of the latter to get the same mining results. This
is not surprising if we look at their running times at Pass 1 and 2 in Table

Fig. 3. Minimum support versus execution time.
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III. After Pass 2, both algorithms behave exactly the same. As shown,
although the execution time of the first pass of EH-Apriori is slightly larger
than that of E-Apriori, due to the extra overhead required for building
HashTable, EH-Apriori incurs significantly smaller execution time than
E-Apriori in the latter Pass 2, as uC2u is decreased greatly from 270355 to
115 by means of hash filtering (at T5-I3-W3-N1000-D100K, minimum
support 5 0.7%). Less uC2u results in much less time to test against each
transaction of the database. Table III also shows the dominance of the first
two passes over the overall mining performance. From this preliminary
experiment, we can see that strategies aimed at pruning unnecessary
candidates for intertransaction association rule mining can offer greater
benefits than for the classical association rule mining [Park et al. 1995].

5.2.2 Scale-Up Experiment. The second set of experiments is designed
to study scale-up properties of E-Apriori and EH-Apriori. Figure 4(a) shows
how E-Apriori and EH-Apriori behave as the number of items in a database
increases from 600 to 1000.

It is interesting to note that, when the number of items increases and
keeping the minimum support unchanged, the execution time of E-Apriori
decreases while that of EH-Apriori remains nearly unchanged. This is due
to the fact that, with more items, each transaction under a certain average
and maximum transaction size condition is more likely to have different
items assigned, resulting in less number of large one-itemsets that meet
the support threshold. The smaller uL1u leads directly to less candidates C2
being generated, and therefore less time for E-Apriori to count them.
However, for EH-Apriori, as the hash function being utilized can prune a
large number of candidate two-itemsets, the real uC2u left is nearly the
same, although the total number of items is different. From the experiment
records, we find that uC2u 5 15 when there are 600 items in the database
(N 5 600), and uC2u 5 14 when N 5 1000. Hence, the time spent on pass
2 changes little under EH-Apriori. This test shows us that setting an

Table III. Comparison of E-Apriori and EH-Apriori
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appropriate hash function can make EH-Apriori robust to different item
numbers.

Next, we examine how both algorithms scale up with the number of
transactions in the database. We increase the number of transactions from
60K to 100K. The results shown in Figure 4(b) coincide with our expecta-
tion: the execution times of both algorithms increase when more transac-
tions in a database need to be scanned and checked. As shown, their mining
times scale quite linearly.

Finally, we investigate the scale-up as we increase the average transac-
tion size from 4 to 7. From the results presented in Figure 4(c), we may
observe that for both algorithms, the more items per transaction, the more
time needed to process. The reason is obvious: given a minimum support
and a set of items, when the average transaction size is large, there is more
uL1u generated; hence more uC2u needs to be counted. Also, the time needed
to scan every transaction of the database becomes longer, resulting in
higher processing costs. For example, at average transaction size 5, the
execution times of E-Apriori and EH-Apriori are about 264 seconds and 28
seconds respectively, but at average transaction size 7, they increase
dramatically to 875 seconds and 77 seconds.

Fig. 4. Results of scale up experiments.
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5.2.3 Effect of the Maximum Interval. In our third experiment, we
study the impact of maximum interval (maxspan) on the performance of
mining algorithms.

In Figure 5, when the maximum interval is 0, mining intertransaction
association rules degrades to mining classical association rules. When the
maximum interval increases, much more candidates, such as {D0(a),
Dx(a)}( x Þ 0), are added into C2. Thus, both E-Apriori and EH-Apriori
have to spend more time to count candidate Ck. For instance, the execution
time of E-Apriori increases from 129 seconds at maximum interval 0 to 523
seconds at maximum interval 3, and the execution time of EH-Apriori
increases from 25 seconds to 64 seconds, about 75% and 60% more respec-
tively. From this experiment, we may find that in the situation of more
candidates, EH-Apriori can outperform E-Apriori, exhibiting more advan-
tages of hash filtering techniques.

5.2.4 Effect of the Size of a Hash Table. Observing that the hash table
size used by EH-Apriori affects the cardinality of C2 generated, in the last
experiment on synthetic data, we examine the performance of EH-Apriori
under five different HashTable sizes, varying from 300K to 700K. As
illustrated in Figure 6, with more hash entries, the problem of hash

Fig. 6. Hash entries versus time.

Fig. 5. Maximum interval versus time.
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collision can be alleviated a little more. Therefore, more useless two-
itemsets can be pruned away effectively before the database is scanned.
EH-Apriori can thus achieve more improvement than E-Apriori.

5.3 Experiments on Real Data

To study the applicability of intertransaction association rules, we conduct
experiments on two different real datasets, obtained from Singapore Stock
Exchange and Hong Kong Observatory respectively. In this subsection, we
summarize the results of the experiments.

5.3.1 Tests with 1996 Singapore Stock Data. From the price data of
1996 Singapore Stock Exchange (SSE), we created two datasets: a WIN-
NER set and a LOSER set. Records in both sets have the same format
(date, counter-list). The counter list in the WINNER set contains those
counters whose closing prices are 3% more than the previous closing prices;
and the counter list in the LOSER set the other counters. Since there were
250 trading days in 1996, both datasets have 250 records. As there are
some missing values in the original data we have, we only get 84 counters
that have complete price information from every trading day. Furthermore,
as the major trend for SSE in 1996 was down side, the average transaction

Fig. 7. Execution time on WINNER stock data (T10-N84-D250).
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size of LOSER is pretty large (more than 70), while that of WINNER is
relatively small (less than 10).

Since we do not have a large number of items (Total_Item 5 84) in the
datasets, the candidate C2 fits in memory during the experiments. As
pointed out by Ramaswamy et al. [1998], “Using a L1 p L1 2-dimensional
array instead of a hash-tree for discovering large 2-itemsets is much faster
when memory permits.” We implement such a technique in another algo-
rithm called EA-Apriori as a comparison with E-Apriori and EH-Apriori
algorithms.

Figure 7 shows the experimental results of three algorithms on the
WINNER dataset when support threshold and maxspan change. In accor-
dance with results obtained from synthetic datasets, EH-Apriori always
outperforms E-Apriori. Nevertheless, because the third EA-Apriori algo-
rithm eliminates the effort of building the hash table and navigating the
hash-tree to count candidate two-itemsets, it achieves the best performance
of the three.

As the WINNER data set is small, with the average transaction size 10,
we do not have rules with large support. However, we did find some
interesting rules such as “D0(HAISUNWT), D0(KIMENGWT) f D1(HAIS-
UNWT)” at support 5 3.5% and confidence 5 80%. That is, if HAISUN
Warrant stock and KIMENG Warrant stock, belonging to the loans and

Fig. 8. Execution time on LOSER stock data (T70-N84-D250).
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bond sectors respectively, go up the same day, HAISUN Warrant will
continue to increase the next day.

The test result of the LOSER data set, which has the average transaction
size 70, is illustrated in Figure 8. Surprisingly, EH-Apriori becomes the
worst algorithm. Looking at Figure 8(c), we find that EH-Apriori takes
quite a lot of time at k 5 1 to build up the hash table. Hence, the benefit of
pruning out unnecessary candidates using the hash table disappears when
transactions have more items on average. Another interesting observation
made from this set of experiments is that the performance of both EA-
Apriori and E-Apriori is very similar. By checking the experiment records

Table IV. Items Used in the Hong Kong Meteorological Datasets
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in detail, we note that uC2u 5 305 when support 5 98%, and our E-Apriori
parameter setting allows all the 305 candidate two-itemsets to be within
one leaf. In this case, the hash tree contains only one leaf node. Thus, the
efforts in navigating the hash tree to count candidates under E-Apriori
decreases, making both E-apriori and EA-Apriori behave similarly. How-
ever, once one leaf cannot accommodate all the candidate itemsets, e.g.,
uC2u 5 1090 at support 5 97%, E-Apriori needs to spend more time than
EA-Apriori.

From the LOSER dataset, we found a total of 623 intertransaction
association rules at support 5 98.5% and confidence 5 99%; one example
rule is “D0(UOL), D1(SIA) f D2(DBS).” It says that, if UOL goes down and
SIA goes down the next day, DBS will go down on the second day. Here,
UOL stock represents the land market, SIA stock represents loans and
debentures, and DBS represents the banking market. This rule reveals the
causal relationship among three major stocks in Singapore. As is known,
land properties in Singapore play an important role in national economic
development, and therefore their decay inevitably leads to a bad perfor-
mance of loans and banking. Such a discovered rule reveals some of the
characteristics of Singapore’s economic structure.

5.3.2 Tests with Hong Kong Meteorological Data. To examine the
potential applications of intertransaction association rules further, we run
the algorithms against meteorological data obtained from the Hong Kong
Observatory headquarters, which takes observations, including wind direc-
tion, wind speed, dry bulb temperature, relative humidity, rainfall, and
mean sea level pressure, etc., every 6 hours each day. We try to find
intertransaction association rules from the 1995 meteorological data, and
examine their prediction accuracy using the 1996 meteorological data from
the same area in Hong Kong. Considering seasonal changes of weather, we
extract records from May to October for our experiments, and there are
therefore totally 736 records (total_days * 4 5 (31 1 30 1 31 1 31 1 30 1
31) * 4 5 736) for each year. These raw datasets, containing continuous
data, are further converted into appropriate formats with which the algo-
rithms can work, and Table IV lists 32 items after the data transformation.
Each record has 6 meteorological elements (items). The interval of every

Fig. 9. Execution time on Hong Kong meteorological data (T6-T32-D736).
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two consecutive records is 6 hours. We set maxspan 5 11 in order to detect
the association rules happening within 3 days (i.e., (11 1 1)/4 5 3).

Figure 9 gives the mining times of E-Apriori, EH-Apriori, and AH-Apriori
at different parameter settings. Comparatively, the difference between uC2u
and uL2u is small in these experiments. Thus, the role of the hash table in
EH-Apriori to eliminate unnecessary candidate two-itemsets is not obvious,
although little effort is required to build the hash table at the average
transaction size 6.

At support 5 45% and confidence 5 92%, from the 1995 Hong Kong
meteorological data we found only 1 classical association rule—“if the
weather is medium wet, then there is no rain at the same time” (which is
quite obvious), but 580 intertransaction association rules (maxspan 5 11).
Note that the number of intertransaction association rules depends on the
maxspan setting. Table V lists some significant intertransaction associa-
tion rules found. We measure their prediction capabilities using the 1996
meteorological data by Prediction-Rate (X f Y) 5 sup(X ø Y)/sup(X),
which can achieve more than 90%.

Our study on real data is on-going. The results obtained so far indicate
that, with intertransaction association rules, we can discover more compre-
hensive and interesting knowledge from the databases.

6. DISCUSSIONS

We have described the multidimensional intertransaction association rules,
related mining algorithms, and some experimental results on synthetic and
real data. For ease of understanding and simplicity, the discussion has
been limited to one dimension, which happens to be time. In this section,
we compare such association rule mining with several related data mining
work, and then discuss how the technique addressed in this paper can scale
beyond one dimension.

6.1 Related Work

The problem of multidimensional intertransaction association rule mining
looks similar to the problems of sequential pattern and rule discovery when
there is only one dimension involved. In this subsection, we will discuss the
differences between the new problem and related work.

Table V. Some Significant Intertransaction Association Rules
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Traditional association rule mining. The original association rule
mining proposed by Agrawal et al. [1993] is apparently a special case of the
multidimensional intertransaction association rule mining: If we omit the
dimensional attributes in the transactions, and set the window size to one,
the multidimensional intertransaction association rule mining will degrade
to intratransaction association rule mining.

Sequential pattern discovery. The problem of sequential pattern
mining, as defined in Agrawal and Srikant [1995], is to find the maximal
sequential patterns among all sequences that have a certain user-specified
minimum support. Sequential pattern mining can be viewed as an exten-
sion of the classical association rule mining along two directions. First, the
contents of the transaction database are different. In classical association
rule mining, each record in the transaction database contains only the
items bought by a single transaction of a particular customer. For sequen-
tial pattern mining, each record in the database contains items bought by a
particular customer, in different transactions during a period of time.
Second, while there is no ordering of items in the classical association rule
mining, items are ordered according to the time when they were bought.
One sequential pattern example is “80% of customers bought shoes after
they bought shirts.”

Despite these amendments, the basic problem of sequential pattern
mining has not been changed: the association to be discovered is still
among the items within a record of the transaction database, with an extra
requirement that items in itemsets should appear in the same order. On
the other hand, intertransaction association mining is fundamentally dif-
ferent: mining associations among items from different transaction records
(customers). Besides, sequential patterns only focus on successive/prece-
dent relationships of items. No concrete intervals, such as 5 days later, 2
miles away, etc., between the occurrence of items are captured within
sequential patterns.

Episodes and generalized episodes discovery. Mannila et al. intro-
duced the problem of discovering frequent episodes from sequential data
[Mannila and Toivonen 1996]. An episode is a collection of events that occur
relatively close to each other in a certain (partial) order, whose total span
of time is constrained by a window. Later in 1997, the problem was further
generalized to allow events to have attributes [Mannila et al. 1997]. For
example, a Web page access can be viewed as an event with two attributes,
page and host, specifying the page accessed and the host that made the
access respectively. With generalized events, frequent episode rules have
the form of

P@V# f Q@W#

where P and Q are episodes; and V and W are real numbers representing
time intervals, stating that if episode P has a minimal occurrence at
interval [t, t9] with t9 2 t # V, then episode Q occurs at interval [t, t0] for
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some t0 such that t0 2 t # W. A rule discovered from the WWW log could
be as follows:

x.page 5 p1 ` y.page 5 p2 ` x.host 5 y.host @60#

f x.page 5 p1 ` y.page 5 p2 ` z.page 5 p3

`x.host 5 y.host ` y.host 5 z.host @120#

(1)

This rule expresses that if a host accesses page p1 and p2 within one
minute, page p3 is likely to be accessed by the same host within two
minutes. Like multidimensional association rules proposed in this paper,
generalized episode rules can associate multiple attributes to events, which
is not possible for traditional association rules. Although multidimensional
intertransaction association rules are quite similar to generalized episode
rules, when one of the dimensions is time, the former is more concise and
flexible than the latter in representing the quantitative temporal relation-
ships of events or items. For example, with intertransaction association
rules, we can easily specify

D0,h~ p1 , p2! f D1,h~ p3!, D3,h~ p1!. (2)

That is, if page p1 and p2 are accessed by a host, the same host will likely
access page p3 one minute later, and access page p1 again three minutes
later. Such rules cannot be expressed by episode rules, since only time
intervals like V 5 [t, t9], W 5 [t, t0] are used to roughly specify the order
of events in an episode, and these intervals are constrained to have the
same starting time t.

Another difference to the discovery of frequent episodes is that our
mining algorithms can find all association rules within the specified time
span, regardless of the ordering of events, with reasonable amount of time.
As mentioned by the authors, only certain types of episodes with predefined
predicates (such as simple episodes where no binary predicates are in-
cluded) are easily detected using their mining algorithms. The efficient
mining of more general episode rules with arbitrary time bounds from a
large sequence remains an open problem.

Temporal relationship mining in time sequence. Compared to epi-
sode sequences, Bettini et al. looked for more complex event sequences from
time sequential data [Bettini et al. 1996; 1998]. Unlike episodes where only
the order, but not the concise quantitative relationships among events, can
be expressed, Bettini’s model allows temporal relationship among events to
be quantitatively defined, even using different granularities. Compared
with multidimensional intertransaction association rules, their model has
two limitations. First, they only considered the mining task where an event
structure is given, and only some of its event variables, including the
starting event variable, is instantiated. Therefore, the mining process only
discovers possible event instances that match the given structure based on
the frequence on which the corresponding events occur in the event
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sequence. No algorithms are given to discover all event structures with
frequence that exceeds a threshold. Second, their work focused on event
sequences. It is obvious that rules above a certain confidence threshold can
show the connections between events more clearly than event sequences
alone [Mannila et al. 1997]. However, neither definitions nor mining
algorithms regarding the rules were discussed in their context. It is worth
pointing out that, with proper data preprocessing and careful treatment,
multiple time granularities can be realized in multidimensional intertrans-
action association model.

Rule discovery from time-series data. In a more recent work, Das et
al. studied the problem of finding rules which relate patterns from a time
series to other patterns in the same series, or patterns in one series to
patterns in another series [Das et al. 1998]. Their example rule “if the
Microsoft stock price goes up and Intel stock price falls, then IBM stock price
goes up the next day” looks very similar to intertransaction association
rules. However, compared to the intertransaction association rules, the
rules they studied are rather simple and limited to the following form:

If A occurs, then B occurs within time T (3)

where A and B are basic temporal patterns detected from those sequences.
Although the authors mentioned that the rules can be extended to a more
complex form, such as

A1 ` . . . ` Ah@V# f B@T# (4)

stating if A1 and . . . and Ah occur within V units of time, then B occurs
within time T, the rules are still limited to two windows only.

As a summary, we believe that multidimensional intertransaction associ-
ation rule mining proposed in this paper not only describes a new problem
that has not been addressed before, but also gives a uniform treatment to a
number of association- and pattern-related mining problems.

6.2 Mining Intertransaction Association Rules in Multidimensional Space

Although the performance study in this paper focused on one-dimensional
intertransaction association rule mining, the methods can be generalized to
mine multidimensional intertransaction association rules, which involve
multiple dimensional attributes and associated intervals. We start our
discussion from two dimensions for ease of explanation, and then extend it
to m-dimension.

Figure 10 illustrates a two-dimensional space. To avoid dealing with a
large number of dimensional values, we discretize the domains of its
dimensional attributes x and y into uD1u and uD2u equal-sized intervals, and
use D i, j to denote a point in the space. Each transaction in the database can
be mapped through a function dim to a certain point. Transactions converg-
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ing on the same point are combined into one, leading to uD1u p uD2u total
number of transactions in the extended database.

Similarly, we find two-dimensional intertransactions association rules
based on large itemsets. The candidate itemsets under two dimensions can
be generated in the same way as those under one dimension. However, the
candidate counting effort increases dramatically with the number of dimen-
sions. For example, to get the support of a three-itemset {D0, 0(a), D0, 1(a),
D1, 2(b)}, taking D0,0 as the reference point, we need scan transactions at
D0,0, D0,1, and D1,2. Moving one step up (or right) and taking D0,1 (or D1,0) as
the reference point, we need check another three transactions at D0,1, D0,2,
and D1,3 (or D1,0, D1,1, and D2,2), and so on. Approximately, uD1u p uD2u
number of points can be taken as the reference point inside a two-
dimensional context, and for each such point, the scanning scope covers
several transactions, leading to a huge search space as compared to the
case of one dimension.

To reduce the mining space, we can adopt a sliding region, which is
similar to the sliding window in the one-dimensional context, to indicate
the interesting spans (e.g., maxspanx, maxspany) of associations along
different dimensions. Figure 10 illustrates a 4 3 3 square-shaped sliding
region. Besides the length limitation, more flexible dimension constraints
can also be posed through sliding regions. For example, the shaded sliding
region in Figure 10, excluding the reference point, tells that only associa-
tions whose x-axis dimensional value changes more quickly than their
y-axis dimensional value ( x . y) are of interest.

Generally, we can use a boolean expression @ to represent a sliding
region r, such that any point Dx, y in r except the reference point D0,0 must
satisfy @. Without loss of generality, we can assume that @ is in disjunctive
normal form C1 ~ C2 ~ . . . ~ Cs, where each Ci is of the form di1

` di2
`

. . . ` dit
. Each element dij

can be either a condition on individual
dimensional value (e.g., x , 3, y , 2), or a condition involving several
dimensional values (e.g., x . y, y 5 x 1 2). For instance, the shaded
sliding region in Figure 10 can be described using the boolean expression
@: ( x , 5) ` ( y , 4) ` ( x . y).

Fig. 10. Sliding region for a two-dimensional transaction database.
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Under the m-dimensional space where m . 2, totally uD1u p uD2u p . . . p

uDmu number of points could be taken as the reference point, based on
which a series of transactions may be checked in order to find large
itemsets. We can also use an m-dimensional sliding cube to reduce the
search space. However, the mining cost is still significantly higher, some-
times even intractable, than for those under one or two dimensions, due to
the huge space.

Inspired by the interesting work of Fukuda et al. on mining optimized
association rules, which involve both numeric and boolean attributes
[Fukuda et al. 1996a; 1996b], another possible method to tackle the
efficiency problem of multidimensional intertransaction association mining
is to explore the use of techniques developed in the computational geometry
area, in order to perform fast context-based search and matching [Aggar-
wal et al. 1987].

6.3 Reducing Search Space Using Templates and Concept Hierarchies

Mining multidimensional intertransaction association rules is computa-
tionally more complex than mining traditional association rules. One of the
major difficulties is the huge search space, and the overwhelming number
of rules to be generated, than that in the traditional association rule
mining situation. In order to make such rule mining truly practical and
computationally tractable, besides the sliding-window approach adopted in
this paper, we can explore the use of template models and conduct mining
at multiple levels of abstraction.

—Template-Guided Intertransaction Association Mining. As seen in
our discussion, sometimes it is still costly to mine intertransaction
associations, and mining may also generate a large number of association
rules because of a too large size of transaction database, too many
itemsets contained in many transactions, or too large sliding windows.
However, a user is often interested in only a small number of particular
intertransaction associations. As an alternative to mining many rules
and then selecting interesting ones from them, a query-directed, con-
straint-based approach can be adopted.
One way is to provide users with a template model to restrict the
discovered rules to those which they are interested in. Essentially, a
template is an expression used for specifying constraints on the inter-
transaction association rules. Similar to the studies of constraint-based
mining of intratransaction associations [Ng et al. 1998], one can push
constraints deeply into the intertransaction association mining process.
For example, in a weather database, a user may only be interested in
how Central American hurricanes influence the nearby weather, both in
time (hours) and region (miles). In this case, only the region “Central
America” and the weather pattern “hurricane” will be selected, and the
study will be focused only to a limited-size window related to these
hurricanes. A similar method can be applied to finding intertransaction
associations related to highway traffic jam patterns. A user may only be

450 • Hongjun Lu et al.

ACM Transactions on Information Systems, Vol. 18, No. 4, October 2000.



interested in the situations of bad weather conditions and major acci-
dents, instead of searching for all the cases from a large traffic database.
Also, in stock movement prediction, a rule like “When stock ‘a’ rises. and
within the next two days another different stock also rises, then which
stock will most likely rise one week later, following the rise of the second
stock?” might receive more attentions from investors.
Apparently, with the guidance of templates, mining can be more focused,
and the number of rules generated can thus be reduced substantially.
More detailed discussion can be found in our other paper [Feng et al.
1999].

—Mining Intertransaction Associations at Multiple Levels. Besides
the sliding window and template-guided mining methods, we can also
consider mining intertransaction association relationships at multiple
levels of abstraction. Similar to mining multilevel intratransaction asso-
ciations [Agrawal and Srikant 1995; Han and Fu 1995a], data involved in
mining can be organized into concept hierarchies, and mining can be
performed at multiple levels by drilling up or down along them to find
more general or special rules. This is especially important in mining
intertransaction associations, since sometimes there exist very few inter-
transaction associations with high support at high-level concepts. It is
helpful to first mine at a high level and progressively drill down to catch
interesting patterns. For example, for a stock exchange database, one
may organize the concepts of stock price fluctuation like {slightly-up,
moderately-up, sharply-up , UP}, based on which one may first find the
intertransaction associations at the rough granularity {UP, DOWN}, and
then drill-down to see more detailed changes, such as sharply-up versus
moderately-down. For the same reason, one may partition geographic
regions into different hierarchies (such as Asia, North America, Europe,
etc.), or partition stock categories into refined subcategories (such as oil,
computer, automobile, etc.) so as to facilitate progressive deepening in
the data mining process.

7. CONCLUSION

While the classical association rules have demonstrated strong potential
values, such as to improve market strategies for retail industry, they are
limited to finding associations among items within a transaction. In this
paper, we propose a more general form of association rules, named multi-
dimensional intertransaction association rules. These rules can represent
not only the associations of items within transactions, but also associations
of items among different transactions. The classical association rule can be
viewed as a special case of multidimensional intertransaction association
rules. We implement several algorithms for finding such intertransaction
association rules by extensions of Apriori, and present some performance
results by applying the algorithms to both synthetic and real datasets.

One interesting observation made from the experiments is that, given a
specific minimum support, the candidate set of two-itemsets in the inter-
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transaction association mining is much larger than that in the classical
intratransaction association mining. Therefore, strategies to prune unnec-
essary two-itemsets from the candidate set is more beneficial to the overall
performance, than it is in the case of classical association mining. Our
experimental results show the great advantages of hash and array tech-
niques [Park et al. 1995; Ramaswamy et al. 1998], which are adopted in the
previous studies, on this aspect. However, when datasets to be mined have
a large average transaction size, say around 70, the benefits of using the
hash technique to reduce the number of candidates disappear, since build-
ing a hash table itself takes quite a long time.

We view this work as a first step, with a number of interesting problems
and opportunities remaining for future work. First, associations among
transactions were studied at specific points in the m-dimensional space. We
may consider to extend such point context to cover wider ranges and
subspaces, so that more general rules like “After McDonald and Burger
King open branches, KFC will likely open a branch within two months and
less than one mile away” can be discovered. Such extension might also be
helpful to handle those transactions with unequal intervals and holes in
the m-dimensional space. Furthermore, to prevent mining uninteresting
rules at high computational costs, we plan to provide a more general
framework, to enable users to specify certain contexts under which the
association rules are to be mined. Besides, development of efficient discov-
ery algorithms for two- and m-dimensional intertransaction association
rules is another issue worth exploration. It might also be interesting to
study the intertransaction association rule mining in distributed and
parallel environments.
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