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Abstract 

Multi-dimensional, inter-transaction association rules extend the 
traditional association rules to describe more geneml associations 

among items with multiple properties cmss transactions. “Af- 

ter McDonald and Burger King open branches, KFC will open a 

branch two months later and one mile. away” is an ezample of 

such rules. Since the number of potential inter-transaction asso- 
ciation rules tends to be extremely large, mining inter-transaction 
associations poses more challenges on eficient pmcessing than 

mining intm-transaction associations. In order to make such as- 
sociation mining truly practical and computationally tractable, 

in this study, we present a template model to help users declare 
the interesting inter-transaction associations to be mined. With 
the guidance of templates, several optimization techniques are 

devised to speed up the discovery of inter-tmnsaction association 

rules. We show, through a series of experiments, that these opti- 

mization techniques can yield significant performance benefits. 

1 Introduction Ii2 : If the prices of IBM and SUN go up, Microsoft’s 
will most likely go up the next day. 

Since the problem of mining association rules was in- 
troduced in [AIS93], a large amount of work has been 
done in various directions including efficient, Apriori- 
like mining methods, mining generalized, multi-level, 
or quantitative association rules, association rule min- 
ing query languages, constraint-baaed rule mining, in- 
cremental maintenance of discovered association rules, 
parallel and distributed mining, mining correlations and 
casual structures, association rule mining, etc. Despite 
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these efforts, there is an important form of association 
rules which are useful but could not be discovered with 
the existing association rule mining framework. 

Taking stock market as an example, we can construct 
a share price movement database as follows: each trad- 
ing day has one record in the database and each counter 
corresponds to a field in the record. The value of a field 
tells whether the price of the counter goes up or down. 
Applying the association rules as mentioned above, we 
can discover the rules like 

RI : When the prices of IBM and SUN go up, the price 
of Microsoft will most likely go up on the same 
day. 

While association rule such as RI reflects some re- 
lationship among the prices, its role in price prediction 
is limited; and traders may be more interested in the 
following type of rules: 

Unfortunately, current association rule miners can- 
not discover this type of rules. This is because of the 
fundamental difference between the rules like Rz and 
those such as RI, which we will refer to as classical aa- 
sociation rules. The classical association rules express 
the associations among items within the same transac- 
tion, such as items purchased by a customer or share 
price movement within a day. On the other hand, rule 
R2 represents some associations among the field values 
from difjerent transaction records. To distinguish these 
two types of associations, we name the classical asso- 
ciations as intra-transaction associations and the 
latter as inter-transaction associations. 

In [LHF98], we introduced multi-dimensional inter- 
transaction association rules mining, and discussed its 
related properties in comparison with [BWJ96, BWJ98, 
DLM+98, MT96, MTV97]. A preliminary performance 
study was conducted by entension of Apriori [AS96]. 
From the initial results, we found that multi-dimensional 
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inter-transaction association rules do bring us more com- 
prehensive knowledge than traditional intra-transaction 
association rules, but this is at the expense of higher 
computational cost. In order to make inter-transaction 
association rule mining truly practical and computa- 
tionally tractable, we extend this piece of work in this 
study and propose a template model to help such rule 
discovery. Previous work on traditional association rules 
demonstrated the effective&s of constraint/query-based 
association mining [NLHP98, SVA97, TUA+98, MPC96, 
BP97]. It is applicable to inter-transaction associations 
aa well. Moreover, users may also have certain interest- 
ing inter-transaction intervals in mind, from which to 
do the mining. For example, users may want to know 
how stock u’s rising behavior today affects other stocks 
next week. A rule like “If a goes down, b will go down 
243 days later” most probably cannot inspire much con- 
fidence in stock traders. 

Thus, one contribution of this paper is to provide 
users with a set of constructors to specify the interesting 
inter-transaction associations, so that mining can be fo- 
cused and the cost incurred is proportionate to what the 
user wants and gets. Another contribution of the pa- 
per is that we develop several optimization techniques, 
i.e., joining, converging and speeding, for mining inter- 
transaction association rules under rule templates. This 
allows us to significantly reduce the amount of wasted 
work performed during the mining process. We demon- 
strate the effectiveness of these techniques through a 
series of experiments. 

2 Multi-Dimensional Inter-Transaction Association 
Rules 

In this section, we provide some notations and back- 
ground information for multi-dimensional inter-transa- 
ction association rules. 

Let Z = (il, iz , . . . , ia} denote a set of literals, called 
items, on an m-dimensional attribute schema. A tran- 
saction database 7 is a set of transactions { tl, tz, - * 9 , tn} 
where ti is a subset of 1. On the other hand, an m- 
dimensional space is defined as a finite subset of Nm 
where N is the set of nonnegative integers. A mapping 
function dim maps an m-dimensional attribute item 
onto a point in the m-dimensional space. It is important 
to know that the m-dimensional space provides a uni- 
fied platform onto which any m-dimensional attribute 
values, such as colors, can be mapped through a user- 
defined mapping function. In the following discussion, 
for simplicity, we only discuss inter-transaction associ- 
ation rule mining on the m-dimensional space. 

Let ni and nj be two points in the m-dimensional 
space, a binary relation, r~i + nj, is given which im- 
plies ni precedes nj in the lexicographical order.’ In 

‘The binary relation needs to be provided in order to specify 

addition, a relative distance between ni and nj is de- 
noted ins A(ni,nj). 2 In this paper, we also use A(ni) 
or simply Ai for A(no, ni) where no is a reference point 
in the m-dimensional space. (Note that ni, A(ni) and 
Ai can be used interchangeably with respect to a ref- 
erence point.) We call a m-dimensional attribute item 
ik at the point Aj in the m-dimensional space an ex- 
tended item and denote it as Ai( In general, 
two extended items Ai and Aj(ik) are not equal 
if Ai # Aj. We call a transaction ti at the point Ai 
in the m-dimensional space an extended transaction 
and denote it as Aj (ti). The set of all possible extended- 
items, I,, is defined as a set of Aj(ik) for ‘ik E 1 at all 
points Aj in the m-dimensional space. 7, is the set of 
all extended transactions in the m-dimensional space. 

A reference point of a subset of Z, is the smallest ref- 
erence point for all the extended items in the subset.3 
Normalization is a process to reposition the extended 
items in either a set of extended items or a set of ex- 
tended transactions regarding to the reference point of 
the set in question. A set of extended transactions is 
called a normalized extended transaction set if the in- 
cluded extended items are normalized. 

Table 1: A l-dimensional extended transaction 
database 

As(c), As(e) 
dam b, c, d, e Alr(ta) A,(b), A4(c), 

b(d),A4(e) 

Example 2.1 A simple traditional database is tmns- 
formed into a 1-dimensional extended transaction database 
as shown in Table 1, through a mapping function which 
maps dayi onto a point i - 1 in the l-dimensional space. 
Let T,’ = {Al (tz), A2 (ts), As (ta)}. Following the def- 
inition, the reference point of TL is 1. The extended 
items in T,’ are normalized to this reference point. We 
say T,’ contains a set of normalized extended items: 
{Ao(c), Add), &(e), A&>, Al(b), U4 Mb), W4, 
A2 (41. 

Definition 2.1 A multi-dimensional inter-transa- 
ction association rule is an implication of the form 
X 3 Y, where X c Z, , Y c Z, , and X rl Y = 0. 

queries. The properties need to be precisely specified. However, the 
properties of this binary relation does not affect our mining mecha- 
nism. 

2The relative distance is defined as follows. Let f&i = 

( Vl,lQr”‘, v,) and nj = (uI,u~,..-,u~). B(ni,TZj) = (Ul - 
Wl,U2 -v2,..*,u, -v,). 

3Let ni = {vI,v~,~~~,v~) and nj = (u~,uz,...,u~). 
The smallest reference point of the two points is 
(min(u1, wl),min(u2,vz),...,min(u,,u,)). 
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Based on Definition 2.1, a rule that predicts the 
stock price movement, “if the price of stock ‘a ’ increases 
one day, and the price of stock %’ increases the fol- 
lowing day, then most probably the price of stock ‘e’ 
will increase on the fourth day” can be expressed by 
a l-dimensional inter-transaction association rule as: 
AO (a>, AI (4 * A3 (4. 

Table 2: Three normalized extended transaction sets 
that contain A,(a) and Ar (c). Note: RF refers to ref- 
erence point. 

A set of extended The RF Normalized extended 
{transactions TL of T; items in TL 
{Ao(t~),&(tz)) 0 {Ao(~),Ao(b),Ao(c) 

w 
Al(~),At(d),Al(e)l 

2 {Ao(a), ho(b) 
Al(a),Al(b),Al(c),Al(e)) 

3 tAo(4 Ao(b), Ao(c), Ao(ej 
Al(b),Al(c),Al(d),Al(e)) 

Similar to intra-transaction association rules, we use 
szlpport and confidence as two major measurements. 
Traditionally, the support of a rule X + Y is the 
fraction of transactions that contain X U Y over the 
whole transactions, and the confidence of the rule is the 
fraction of transactions containing X that also contain 
Y. Let’s consider the rule “A,(a), Ar (c) 3 As(e)” ap- 
plied to Example 2.1. Table 2 shows three normalized 
extended transaction sets that contain {As(a), Ai (c)}. 
The only normalized extended transaction set that in- 
cludes {&(a),Al(c>, b(e)) is {&(h),&(t2), b(k), 
As (t4)). Therefore, the support and confidence are l/5 
and l/3, respectively, where 1 is the number of nor- 
malized extended transaction sets that include {As(a), 
A1 (c), As(e)}, 5 is the total number of transactions, 
and 3 is the number of normalized extended transac- 
tion sets that contain {A,(a), Ai (c)}. 

Definition 2.2 Giwen two subsets of Z,, X and Y. Let 
T,, be a set of normalized extended transaction sets that 
contain X U Y, T, be a set of normalized extended tran- 
saction sets that contain X, and 7, be the set of all 
extended transactions in the database. The support 
and confidence of an inter-tmnsaction association nrle 
X =+ Y is defined as follows: support(X =S Y) = 
jTzy1/17el and confidence(X =S Y) = jTz,l/lTSl. 

Figure 1 depicts a 2-dimensional extended transac- 
tion database. There are totally four items, a, b, c, and 
d. For simplicity, we denote a point in the a-dimensional 
space using AZ,y with respect to a certain reference 
point.* The database contains extended transactions 
such=Ao,o(tl) = {A0,0(a),Ao,o(b),Ao,o(c)}, AI,o(~) = 

Pl,o@>), . . -> 43 (h) = (A4,da)). Upon such ELI-I 

4Recall A; is used for a point n; in m-dimensional space regarding 
a reference point. The (z, y) in A =,,, are used to index a point in 2- 
dimensional space. 

Y 
1 

t16 t17 t1s t19 120 

I I I I I I c 

0 1 2 3 4 X 

Figure 1: Graphical representation of a 2-dimensional 
transaction database. 

extended transaction database, the support and con- 
fidence of the rule “Ao,e(a),Ae,r(c) =+ A,,,(d)” are 
2/20 and 2/3, respectively, since there are totally 3 nor- 
malized extended transaction sets: {Ac,c(tr), A,,, (ts), 

&,1(t7>), {Ao,zh), A0,3hih &,dtd)r and {&,&), 

&,2(h), &(tld), containing {&,0(a), AoJ(c)}, and 

2 of them contain {A,,,(a), A,,,(c), Al,,(d)}. 

3 Template Model for inter-Transaction Associa- 
tion Rules 

A frequently encountered problem in association rule 
mining is that mining systems may return quite a large 
number of rules. With inter-transaction associations, 
which capture more knowledge than traditional ones, 
the number of rules returned tends to be even more. 
Thus, from the standpoints of both users and computa- 
tional costs, it is necessary to restrict the search space 
and perform human-centered data mining. In this sec- 
tion, we present a template model to enable users to 
specify what kinds of interesting inter-transaction asao- 
cgation rules are to be mined. In the following, we will 
first define some operators used in the inter-transaction 
association rule templates. 

First, consider two points Ai and Aj in the m-dimen- 
sional space. Assume that the relative distance func- 
tion and the binary relation + are given. The following 
boolean comparison operators can be defined. 

l equaZ(Ai, A,) is true iff the relative distance be- 
tween the two is zero. 

l pec&cnce(Ai, A,) is true iff Ai 4 A,. 
l adjacent(Ai, Aj) is true iff prececZence(Ai, Aj) is 

true and the relative distance between the two is 
-8 
1. 

Second, let wi = (A,, A,) be a template window in 
the m-dimensional space. Assume size(ui) is a func- 
tion that returns the size of the template window wi. 
Some binary operators can be defined on the template 
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windows including intersect, union and difference. Let 
wi = (A,; ,A,,) and wj = (Asj, Aej). For example, 
intersect(w;, wj) will return a template window wk = 
(max(A,, , Aej), min(A,;, Aej)). Also we assume that 
boolean binary operators such as overlap and inclusion 
between two template windows can be defined. Further- 
more, given a Ai and a window 2~ti, a member function 
member(Ai, wi) will return true if Ai is included in the 
template window. 

A template is an expression Vr (&)A.. .AVm(Pm) + 
Vmfl (Pmfl)A. - .AVm+n (Pm+,J (&,&)whereV@J 
is an extended item variable, BI is a set of con- 
straints upon items, and & is a set of constraints upon 
the m-dimensional space. Note that all Vi refer to 
the same Ae as the reference point. The above rule 
template states that “find those association rules that 
satisfy both f?, and RI”. As item constraints have 
been extensively studied in pLHP98, SVA97, TUA”98, 
MPC96, BP97, HF95], we will focus on B, in this paper. 
Without loss of generality, the boolean expression 23, is 
in the conjunctive normal form, i.e., D1 ~\~zr\...r\D,, 
where each Di is of the form cril V aia V * - - V ai,, . Let 
Vi and Vj be two extended item variables, wi and wj 
be two template windows, and 21 be an integer, each 
allowed oij is drawn from the following classes of con- 
straints: 

l Constant Constraints: a) Vi = (~1, TJ~, * . . , v,) where 
vi is a nonnegative integer in the i-th dimension; b) 
wi = (V,, V,) where both V, and V, are points. 

l Constraints between points: eqzlaZ(Vi, V,), 
precedence(Vi, Vj) and adjacent(Vi, Vj). 

l Constraints between template windows: overlap 
(UQ, wj) and inclusim(wi, wj). (A template win- 
dow can be obtained from other windows using 
intersect, union and diffe‘erence operators.) 

l Constraints between a point and a template win- 
dow: member(Vi,w& 

l Constraints involving an integer: sixe(wi) 0 w and 
d(Vi, Vj) 19 v, where 8 is one of the boolean oper- 
ators, =, #, <, 5, >, 2. (Aggregate functions min 
and ma can be prefixed to size(wi) and d(Vi, Vj) 
as well.) 

Example 3.1 Suppose users show interest in those rules 
like “When stock ‘a ’ rises, and within the following 2 
day8 another difierent stock also rises, then which stock 
will most probably rise one week later following the 8ec- 
ond tise”, we can describe such constraint using the 
template Vr (a) A VZ (Pz) j Vs(P3) (Z?,, Dr), where 
Br: Pz # A and B,: Vr = A, A wr = (Ai, A,) A 
member(Vz, wr) A d(V2,Ve) = 7. 

Apparently, rules like “Ae(a), Ar (PQ) + As(P3)” 
and “Ao(a), A2(P2) =S A9(P3)” satisfy the above tem- 
plate. We call each such rule format as a template 

instance. A template may imply several conforming 
template instances. 

Example 3.2 The template Vr (PI) r\Vz (Pz) =$ Vs (P3) 
(Be, BI), where Z?I: 0 and B,: Vr = Ae A equaZ(V2, Or) 
A (d(V3,Vl) = 7 V cE(V3,Vl) = 14), expresses such 
interest as “When two item8 appear on the same day, a 
certain item will happen one week or two week later.“. 
The template instances implied by this template include 
“&(fi),AoU=2> =s A7P3)" and “Ao(Pd,&(Pz) * 

A14(P3)"- 

4 Mining Inter-Transaction Association Rules Un- 
der Templates 

In this section, we give an overview of mining inter- 
transaction association rules. The mining process can 
be divided into four phases: template interpretation, 
mining planning, large-itemset discovery, and associa- 
tion rule generation. 
Phase-l (Template Interpretation): As mentioned 
before, users describe the interesting inter-transaction 
associations through templates, and each such template 
implies one or several template htances, either of which 
the rules discovered later must conform to. For exam- 
ple, the rule template given in ExampIe 3.2 represents 
two template instances: “Ae(*),Au(*) rj AT(*)” and 
“Ae(*),Ae(*) j Ar4(*)“. Since its Br is empty, we 
use * as a wide card. Before starting mining process, 
we need first interpret and translate template, which 
is conveyed by a boolean expression, into template in- 
stance(s) as above so as to provide guidance for mining 
algorithms. 
Phase-2 (Mining Planning): Like traditional associ- 
ation rule mining, we first discover large extended item- 
sets, and then derive rules from these large itemsets. 
Different from traditional itemsets where all items are 
within the same transaction, a k-itemset under the cir- 
cumstance of inter-transaction associations may span 
several transactions, resulting in a much larger search 
space for the discovery of large itemsets than ever. For 
example, to get rules “a~(*), Ae(*) j AT(*)” and 
“Ae(*),Ae(*) + Ar4(*)“, we need identify large 3- 
itemsets by counting candidate 3-itemsets CT’; = { { A0 (*) , 
A,(*), AT(*)}, (A,(*), he(*), Al,(*)}} across every 8 
and 15 consecutive transactions5 Also, candidates C,* 
will be generated by joining lower-level large itemsets 
L;, and so on. The purpose of this phase is to identify 
least amount of candidate itemsets to count at each 
pass k(l RuleLen), and decide the generation plan for 
candidate RuleLen-itemsets. Details for mining plan 
generation are described in Section 5. 

‘In the paper, we use C; to represent candidate itemsets with 
relative addresses in the m-dimensional space, and CJ, to represent 
candidate itemsets with both relative addresses and specific items. 
The same for ~5; and LJ,. 
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Phase-3 (Large-Itemset Discovery): In this phase, 
we find the set of all large extended itemsets identified in 
Phasea. Two algorithms for generating large itemsets 
based on different mining plans are proposed. 
Phase-4 (Association Rule Generation): Using 
the large itemsets, we can find the desired inter-transac- 
tion association rules. The generation of inter-transa- 
ction association rules is similar to the generation of 
classical association rules [AS94]. 

5 Mining Planning Phase 

Mining inter-transaction association rules is a computa- 
tionally intensive problem, requiring considerable search 
efforts compared to the classical association rule min- 
ing. Because of this, careful selection of mining plan is 
important to the overall performance and further the 
practicability of inter-transaction association rules. In 
this section, we first, describe a straight-forward mining 
plan under the guidance of template instances. Sev- 
eral optimizations are then explored in order to reduce 
search complexity for such association mining. 

5.1 Separate Mining Plan 

One simple mining plan is to treat each template in- 
stance belonging to one rule template separately, and 
identify candidates Ci to be counted at each pass k 
(1 5 k 5 RuleLen) for each individual template in- 
stance, in a similar way as Apriori-Gen does [AS94]. 
That is, candidate Ci = {A,, (*), A,, (*), . . -, A,,-, (*), 
A,, (*)} is generated by joining two large k-l-itemsets 
in L;-, , i.e., {Au, (*I, Au, (*I, . . -, Au,-, (*I, A,,-, (*>I 
and {A,, (*I, A,, (*I, - - -, Auh--2 (*), Auk (*I}, where the 
first k - 2 items of both have the same distances rela- 
tive to a reference point. Due to the nice property that 
“any subset of a large itemset must be large”, Li-, 
also includes those k-l-itemsets {A,, (*), Aus (*), . . . , 
;“;;a (*,;$ ‘(“‘,I, {Au, (*I> Aus (*I, -. -7 Au,-, (*I> Aa 
* , --., * ,...,A 

pruning pur;Le. 
uk--3(*L Au,-, (*>, Au, (*>I for 

For each template instance, candidate itemsets C’i 
are designated from k = RuleLen to 1 as above, at 
which the mining process will target later on. Since 
such a plan deals with a template instance separately, 
we refer to it as the separate mining plan. 

Example 5.1 Suppose we have two template instances 
after template translation: “AoPd, Az(p2) =s A4(S), 

A6(P4)” and ‘,Ao(~), Al(&) + As(Ps),A5(P4)“. Ta- 
ble 3 illustrates all candidate itemsets identified by the 
separate method. To derive rules conforming to the 
first template instance, we need calculate the support 
of candidate I-itemsets (Ao(*), A,(*), AJ(*), A,(*)) in 
C,* to get L4. Before that, two candidate 3-itemsets: 
{Ao(*>, AZ(*), &(*>I and {Ao(*>, &(*I, &(*>), shall 

be counted in order to genemte candidate 4-itemsets. 
For pruning purpose, {A,(*), A,(*), A,(*)} (the sub- 
set of {A,(*), A,(*), Ad(*), As(*)}) is also incZuded in 
C;. (Note that, another subset {A,(*), A,(*), A,(*)} 
is actually equaI to {A,(*), A,(*), A,(*)}). Candidate 
itemsets under the second template instance are decided 
in a similar way. 

5.2 Optimizations: Joining, Converging and Speed- 
ing 

As counting each candidate itemset in Table 3 requires 
searching several transactions, the mining cost, is ex- 
tremely high. Here, we ask one question: can we just 
count those least amount, of necessary candidate item- 
sets? In this subsection, we discuss various optimization 
techniques, joining, converging and speeding, to tackle 
such issue. These techniques are based on the follow- 
ing two facts. First, reducing the number of candidate 
extended itemsets can substantially reduce the running 
time of large itemsets detection. Second, reducing the 
size of the window that covers the candidate extended 
itemsets in the m-dimensional space can substantially 
reduce the running time of large itemsets detection. 

In inter-transaction associations, apart from items, 
their relative addresses are also captured within an item- 
set. For example, from two itemsets U = {ho(*), A,(*), 
A,(*)} and V = {A,(*), A,(*), A,(*)}, we know that 
the last two items of U appear in two consecutive trans- 
actions, similar to the first, two items in V. Based on 
such common relative positions (although one is (AZ, A,) 
and the other is (Ao,A,)), We can consider joining 
them in order to reduce the overall cost. In the fol- 
lowing, we define n-joinable condition and give a join 
operator. 

Definition 5.1 Given two itemsets: U = {A,,(ul), 
A&2), -. - , A&,)) and V = tk&d, &&& 
. . . , A,, (Q)}. Let U, E 2” and V’ E 2v. V and 
U are n-joinable iff there exist U’ and V’ that sat- 
isfy the following conditions: (a) IU’l = IV/l, and (b) 
for a given non-negative integer Ad, there exists a one- 
to-one mapping between U’ and V’ such that for any 
A,< (ui) E U’ there is a A,i (vi) E V’ where vi = ui and 
A,i = A,; + A,+ We call Ad the joinable distance, 
and n the joinable size. 

Example 5.2 For two itemsets V = {A,(a), A,(b), 
A4@>, b-(d)1 and U = {Ao(b),A4(d),As(e)}, there 
edst such V’ = {A,(b), A,(d)} and U’ = {A,(b), A,(d)}. 
Therefore, V and U arx 2-joinable. The joinable dis- 
tance is A,. 

Definition 5.2 Let U = {A,,(u,), Aua(u2), .f’, A,,. 
(4) and V = {&,(vI), Ava(w), . -. , &,(vt>} be n- 
joinable on U’ & U and V’ C V. U join V is given as 
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Table 3: The separate mining plan: candidate itemsets to be counted. Note mW is the minimal window that covers 
Cz in the m-dimensional space, and the size gives the size of the window. 

Ao(PI),A~(P~) * A4(h),Aa(p4) 
( Ao * Ao * ,A2 * 

{Ad*)) 
{A4(*)1 
iAe(*)l 

iAo(*), A4(*)) 
tAo(*), Ad*)1 

iAo(*j, A2(*j, Ae(*)) 
{Ao(*), A4(*),A8(*)1 

tAo( 

(Al (*)I 
{As(*)) 
tAa(*)l 

Ao(9 ), 
{Ao(*), Al(*)) 
{Ao(*)s Ad*)) 
fAo(*), As(*)1 
iAo(*h A4(*)) 
{Ao(*~~~a(*l~ 

,* 

AI (P2) + A3(P3), Aa(P4) 

iAo(*), Az(*l> A4(*)1 
tAo(*h A3(*),Ad*)l 

u U’ @VI v = {&&d,&&d, .-et L,(wn)}. 
Let m = s + t - n, and Ad be the joinable distance. 

l A,;(uli)=AU;(~i)f~flIiI~. 
l AUj (wi) = Avj (vi) for s < i 5 m, where Awi = 

A,j + Ad for A,j (Uj) E (V - V’). 

Example 5.3 LetU = {Ae(a),Az(b),A4(~)} and V = 
@o(b), Ad4 A&U- Th e result of U join V on U’ 
and V’, for U’ = {A,(b), A,(c)} and V’ = (As(b), A,(c)}, 
is{&(a), &(b),&(c), As(d)). Let& = (At&>,&(b)) 
and VI = V. The wsuZt of UI join VI on 17; = (A,(b)} 
and v,l = {Adb)) is {Ao(~>, Al(b), A&), W-W 

Compared to the separute mining plan which gener- 
ates candidate {a~(*), As(*), A,(*), As(*)} using (Au(*), 
&(*I, &(*I} and {Ao(*), AZ(*), A,(*>}, the joining 
method is apparently superior for the following two rea- 
sons. First, it needs less number of candidate item- 
sets. Second, the sizes of minimal windows are much 
smaller. Along with the joining operation, the next 
question arises: which itemsets are suitable to be joined 
in order to generate candidate RuleLen-itemsets? One 
technique we use is called converging which converges all 
template instances together. To illustrate, let’s see two 
templates “As(Pr), As (Pz) + A4 (Pa), As (I’d)” and “Au 
(PI), Ar (Pz) 3 As (Ps), As(P4)” given in Example 5.1. 
We note that some common relative addresses exist ei- 
ther within or among template instance(s). Like {As(*), 
&(*I, A4 (*)}, (A2 (*), Ad*), A,(*)} in the former, ad 
{AI(*),A3(*),A5(*)} in the latter, they actually con- 
vey the same address information (i.e, every iterative 
transactions). Based on such observation, we employ 
three heuristics to help identify those joinabIe itemsets: 
(a) appearing in template instances as frequently as pos- 
sible; (b) with a joinable size as large as possible; and 
(c) with a window that covers joinable items as small 
as possible. 

Table 4 shows the joining mining plan, which derives 
the target Ci with joins as given in Example 5.3. For 
k < 4, the way to generate C,* is similar to that in the 

sepumte planning. Comparing Table 3 with Table 4, the 
later exhibits a much smaller search space in terms of 
both candidate numbers and the minimal windows that 
cover Ci at each iteration, indicating that converging 
different template instances and selecting appropriate 
candidate joining plans can reduce the mining cost sig- 
nificantly. 

The other optimization technique we use is called 
speeding which aims at limiting the number of database 
scan in the presence of long rules. We restrict 1 5 k < 
KLimit by performing a series of joining operations in- 
stead of one. For instance, in order to derive target can- 
didate (Ao(*), Al(*), AZ(*), Ad*), &(*)I, we cm per- 
form two joins. First, let UI = {As(*), A1 (*)} and VI = 
VI. Then, UI U; @v; VI = {Ao(*>,&(*>,&(*>} for 

Vi = {Al(*)} and Vi’ = {As(*)). Second, let UZ be the 
result of VI u; CBV; VI, and V2 = {A,(*), A, (*), Ar (*)}. 
Then, UZ CT;@%& = {Ao(*),A~(*),A~(*),A,(*),A~(*)} 
for Ui = {AZ(*)} and V,l = {ho(*)}. After the 3rd 
scan, we can directly construct C; without L$. 

5.3 Joint Mining Plan 

The joining, converging and speeding techniques lead 
us to the joint mining plan. As the separate mining 
plan follows the same way as Apriori-Gen to generate 
target candidates, its correctness has been extensively 
proven in [AS94]. Here, we show that the target large 
itemsets being discovered under the joint plan will be 
the same as those discovered under the corresponding 
separate plan. 

Theorem 5.1 A target large itemset is discovered un- 
der the joint mining plan iff it is discovered under the 
separate mining plan. 

Based on two different mining plans mentioned be- 
fore, two large-itemset discovery algorithms, namely sep- 
arate and joint, are proposed accordingly. 
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Table 4: The joining mining plan: candidate itemsets to be counted. Note mW is the minimal window that covers 
CF, and the aiae gives the size of the window. 

Ao(I3),Az(Pz) + A4(&),&(p4) 

t&o (*)I {Ao(*),Az(*)} {Ao(*),Az(*),A4(*)} {Ao(*),A2(*),A4(*),Ass(*)) 

{A2 (*)I tAo(*)>A4(*fl 
. -. ,> 

{Ao(*)} 
{Al (*)I 
{A2 (*)I 

Ao(J’i),Ai (Pz) =s A3(&),&W’4) 
{Ao(*),Al(*)} {Ad(*),Az(*),Aa(*)} (Ao(*),A1(*),As(*),As(*)} 
{Ad*), Ad*)) 
tAo(*h A4(*)) 

tar(*) 
c; c; c; c; 

p3g = 4 p3;j = 3 pql= 1 jc;j = 2 
size(mW(C;)) = 5 size(mW(C~)) = 5 size(mW(C;)) = 5 size(mW(C~)) = 7 

Table 5: Parameters 

number of potentially 

average size of the potentially 

6 Performance Study 

To assess the performance of the proposed mining algo- 
rithms, we conducted several experimental studies. 

- 

6.1 Generation of Synthetic Data 

The method used by this study to generate synthetic 
data is similar to the one used in [AS941 with some 
modifications noted below. Table 5 summarizes the pa- 
rameters used and their settings. 

We first generate a set L of the potentially large 
itemsets, which may span several transactions, e.g., { 
A,(a), A,(b), A2(c>}, and then assign a large itemset 
from L to transactions. Items and their relative ad- 
dresses (intervals) in the first large itemset are chosen 
randomly, where item is picked up from 1 to N, and its 
interval is picked up from 0 to W. To model the phe- 
nomenon that large itemsets often have common items 
and intervals, some fraction of items and their inter- 
vals in subsequent itemsets are chosen from the previous 
itemset generated. We use an exponentially distributed 
random variable with mean equal to the correlation level 

to decide this fraction for each itemset. The remaining 
items and their intervals are picked at random. After 
generating all the items and intervals for a large itemset, 
we revise each of its intervals by subtracting the min- 
imum interval value of this large itemset. In this way, 
the minimum interval of each potentially large itemset 
is always 0. 

After generating the set L of potentially large item- 
sets, we then generate transactions in the database. 
Each transaction is assigned a series of potentially large 
itemsets. However, upon the generation of one transac- 
tion, we need consider a list of consecutive ones start- 
ing from this transaction, as items in a large itemset 
may span across different transactions. For example, 
after selecting the large itemset {A&), A1 (b), Az(c)} 
for current transaction T,, we should assign item a to 
Z’,, item b to its next transaction Tc+l, and item c to 
T c+2. If the large itemset picked on hand does not fit 
in the current or any one of its successive transactions, 
this itemset is put in these transactions anyway in half 
the cases, and the itemset enters an unfit queue for the 
next transaction the rest of the cases. Each time, we 
pick itemsets from this queue first according to the first- 
in-first-out principle. Only when the queue is empty, do 
we perform random selection from the set L. 

6.2 Generation of Template Instances 

For generality, we generate various template instances 
using a list of parameters shown in Table 5. To model 
the phenomenon that some common relative addresses 
may exist within or among different template instances, 
we divide each template instance into three parts: 11,22, 
and 23 (11+ 12 + Zs = RuleLen). Part I, whose addresses 
are directly selected from previous template instance ex- 
cept for fAb difference, shows the common addresses 
among template instances. Let II = [Y-Overlap X 
RuleLen]. For the first template instance, we generate 
this part randomly. Part II shows the common relative 
addresses within a template. 12 = [Xlhedup x 111. 

Addresses in Part III are chosen randomly with Zs = 
RuleLen - II - 12. The maximum interval scope within 
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Figure 2: Minimum support versus execution time 

each template instance is limited by the window size IV. 

6.3 Experiments on Synthetic Data 

Four sets of experiments were performed to investigate 
the performance of separate algorithm and joint algo- 
rithm. The machine used for the experiments is a Sun 
Ultra Spare Workstation with a CPU clock rate of 164 
MHz and 64 MB main memory. 

6.3.1 Basic Experiment 

The first set of experiments studies the basic behavior 
of the algorithms when the minimum support changes. 
3 template instances of length 4 (InstanceNum = 3, 
RuleLen = 4) are generated based on X/Y-Overlap = 
50%. The speeding parameter KLimit is 3 through the 
whole experiments. 

As shown in Figure 2, when the minimum support 
increases, the execution times of both separate and joint 

decrease because of reduction in the number of candi- 
date Ch and large itemseta Lk at each pass. Throughout 
the experiments, joint is always superior over sepamte. 
For example, in Figure 2(b), when minimum support 
is 0.25%, the mining time of separute is around 434 
seconds, while that of joint is 326 seconds, about 33% 
more time required. This is not surprising if we look 

at their mining plans shown in Table 6. The template 
instances generated for this test are “Au(*), A,(*) j 
AI (*>, A4(+)“, “&I(*), A, (*) +- A,(*), AZ(*)“, and 
‘LAo(*), A,(*) + A,(*),Ae(*)“. The joint algorithm 
generates its target candidates through 

{Ao(*>, Ao(*>, A1(*>),3, @(I) Po(*Wd*)l 
= {A,(*), A,(*>, Al(*), A-d*:>) 

{Ao(*>, A2(*>, A5(*>),3, @(I) tAo (*>A (*I) 

= {Ao(*>,Az(*>,A,(*>,As(*)) 

@ob>,A1(*>~(2, @(I) Wo(*>> Ao(*>A(*>l 

= {A,(*>, AI (*I, AI (4, A2(*>) 

where for simplicity, i and j in (i)@(j) are the i-th and 
j-th extended item in U and V, respectively. 

From Table 6, we can see that at each pass, the joint 
algorithm can count less candidates which are of smaller 
interval scopes than the sepamte algorithm. As a re- 
sult, lots of time can be saved from searching database. 
From this preliminary experiments, we note that strate- 
gies aiming at eliminating unnecessary candidates, espe- 
cially those with large interval scopes, can yield signif- 
icant performance benefits in mining inter-transaction 
associations. 

Table 6: Comparison of separate and joint mining plans 

6.3.2 Further Experiment 

Also, we study the impact of maximum interval scope 
(window size) and rule length on the performance of 
mining algorithms. The experiment was conducted un- 
der two different templates shown in Table 7. Each 
template implies three template instances. The length 
and interval scope of Template I are both 4, while the 
length and interval scope of Template II are 5 and 6, 
respectively. Figure 6 presents the results of the exper- 
iment. 

Intuitively, the mining time under Template II should 
be more than that under Template I, since the itemsets 
indicated in Template II span more transactions and 
tend to be longer. In fact, the results of separate al- 
gorithm do justify such speculation. Table 7 shows the 
candidate number and the maximal interval of candi- 
dates to be counted at each pass under two templates. 
However, the behavior of joint is surprisingly contrary. 
Looking at its search space, we find that joint actually 
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Table 7: Template instances for further experiment 

Instance 1 Template I (RuleLenz4, Interval=l) 1 Template II (RuleLen=B, Intewd=W 

No.1 I Ao(*) A Ao(*) + As(*) A A3(*) 1 Ao(*) A As(*) + A3(*) A As(*) A As(*) 
1 No.2 1 

No.3 

t-t 

A&j A A&j =+ A&j A A&j 

no(*) A Ai * A2(*) A As(*) 

separate IC;l=5,IC;I=5,IC,‘I=6 
Plan size(mW(C;)) = 5, size(mW(Cg)) = 

size(mW(C3*)) = 5 

t-t 
joint 
Plan 

Ic;l = 4, IC,*l = 4, p;/ = 2 
SiZe(77lW(Ci)) = 4, size(mW(C~)) = 

I size(mW(C~)) = 4 

counts less candidates each time by joining necessary 
itemsets, demonstrating the effectiveness of joining op- 
eration and speeding techniques in candidate identifi- 
cation and generation. From this experiment, we note 
that careful selection of search space beforehand is quite 
important to the inter-transaction association mining 
performance. 

7 Conclusion 

In this paper, we present a more general form of as- 
sociation rules, multi-dimensional inter-transaction as- 
sociation &es. These rules can represent not only the 
associations of items within transactions, but also asso- 
ciations of items among different transactions. Mining 
inter-transaction association rules is a computationally 
intensive problem, requiring much more search efforts 
compared to the traditional association rule mining. In 
order to make such association rules truly practical and 
extensible, in this study, we propose a template model 
to help users specify the interesting rules to be mined. 
Several optimization techniques are devised to speed up 
the discovery of inter-transaction association rules. Our 
performance study reveals that with inter-transaction 
association rules, we can discover more comprehensive 
knowledge; and careful selection of search space before- 
hand is critical to the effectiveness and efficiency of such 
association mining. 
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