--- Using ItemsetPrefixTree
Beginning to mine with min support 0.95...
Level 1 candidates: 169 (117)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 2930 comparisons.
28 seconds: # of frequent itemsets for level 1 = 21
`(0/0)
ARMinerApriori.generateCandidates: pruned 0 itemsets using checkSubsets.
Possible sets of duplicates: 596.
2 seconds: # of Generated candidates for level: 2 = 2046 (722)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 19415 comparisons.
179 seconds: # of frequent itemsets for level 2 = 82
`(0/0)
ARMinerApriori.generateCandidates: pruned 5972 itemsets using checkSubsets.
Possible sets of duplicates: 52.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 2507
8 seconds: # of Generated candidates for level: 3 = 142 (62)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
42 seconds: # of frequent itemsets for level 3 = 142
`(0/0)`(117/45)
ARMinerApriori.generateCandidates: pruned 6144 itemsets using checkSubsets.
Possible sets of duplicates: 45.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 8568
15 seconds: # of Generated candidates for level: 4 = 133 (50)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
47 seconds: # of frequent itemsets for level 4 = 133
`(0/0)`(65/22)
ARMinerApriori.generateCandidates: pruned 2244 itemsets using checkSubsets.
Possible sets of duplicates: 23.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 7521
7 seconds: # of Generated candidates for level: 5 = 73 (24)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
33 seconds: # of frequent itemsets for level 5 = 73
`(0/0)
ARMinerApriori.generateCandidates: pruned 128 itemsets using checkSubsets.
Possible sets of duplicates: 7.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 2112
1 seconds: # of Generated candidates for level: 6 = 24 (7)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
26 seconds: # of frequent itemsets for level 6 = 24
`(0/0)
ARMinerApriori.generateCandidates: pruned 24 itemsets using checkSubsets.
Possible sets of duplicates: 1.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 192
1 seconds: # of Generated candidates for level: 7 = 4 (1)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
22 seconds: # of frequent itemsets for level 7 = 4
`(0/0)
ARMinerApriori.generateCandidates: pruned 4 itemsets using checkSubsets.
Possible sets of duplicates: 0.
0 seconds: # of Generated candidates for level: 8 = 0 (0)
AprioriRules.findAssociations: 1704 rules. 186 duplicate rules removed. 1518 rules left.
Mining Started : Mon Feb 24 17:09:11 EST 2003
Mining Complete: Mon Feb 24 17:17:46 EST 2003
time taken: 515 seconds
Required Attributes in Antecedents:
none
Required Attributes in Consequents:
none
--- /Using ItemsetPrefixTree
--- Using Vector
Beginning to mine with min support 0.95...
Level 1 candidates: 169 (117)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 2930 comparisons.
31 seconds: # of frequent itemsets for level 1 = 21
`(0/0)
ARMinerApriori.generateCandidates: pruned 0 itemsets using checkSubsets.
Possible sets of duplicates: 596.
3 seconds: # of Generated candidates for level: 2 = 2046 (722)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 19415 comparisons.
192 seconds: # of frequent itemsets for level 2 = 82
`(0/0)
ARMinerApriori.generateCandidates: pruned 5972 itemsets using checkSubsets.
Possible sets of duplicates: 52.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 2507
7 seconds: # of Generated candidates for level: 3 = 142 (62)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
49 seconds: # of frequent itemsets for level 3 = 142
`(0/0)`(117/45)
ARMinerApriori.generateCandidates: pruned 6144 itemsets using checkSubsets.
Possible sets of duplicates: 45.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 8568
16 seconds: # of Generated candidates for level: 4 = 133 (50)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
55 seconds: # of frequent itemsets for level 4 = 133
`(0/0)`(65/22)
ARMinerApriori.generateCandidates: pruned 2244 itemsets using checkSubsets.
Possible sets of duplicates: 23.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 7521
10 seconds: # of Generated candidates for level: 5 = 73 (24)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
39 seconds: # of frequent itemsets for level 5 = 73
`(0/0)
ARMinerApriori.generateCandidates: pruned 128 itemsets using checkSubsets.
Possible sets of duplicates: 7.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 2112
1 second: # of Generated candidates for level: 6 = 24 (7)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
22 seconds: # of frequent itemsets for level 6 = 24
`(0/0)
ARMinerApriori.generateCandidates: pruned 24 itemsets using checkSubsets.
Possible sets of duplicates: 1.
ARMinerApriori.generateCandidates: Calls to getCandidate saved: 192
1 second: # of Generated candidates for level: 7 = 4 (1)
ARMinerApriori.weighCandidates: counting supports: 33 rows, 1:1 -
|||||||||||||||||||||||||||||||||
ARMinerApriori.weightCandidates: removing candidates saved 0 comparisons.
20 seconds: # of frequent itemsets for level 7 = 4
`(0/0)
ARMinerApriori.generateCandidates: pruned 4 itemsets using checkSubsets.
Possible sets of duplicates: 0.
0 second: # of Generated candidates for level: 8 = 0 (0)
AprioriRules.findAssociations: 1704 rules. 186 duplicate rules removed. 1518 rules left.
Mining Started : Mon Feb 24 17:22:43 EST 2003
Mining Complete: Mon Feb 24 17:31:48 EST 2003
time taken: 545 seconds
Required Attributes in Antecedents:
none
Required Attributes in Consequents:
none
--- Using Vector
--- Comparison line by line
Tree: 28 seconds: # of frequent itemsets for level 1 = 21
Vect: 31 seconds: # of frequent itemsets for level 1 = 21
Tree: 2 seconds: # of Generated candidates for level: 2 = 2046 (722)
Vect: 3 seconds: # of Generated candidates for level: 2 = 2046 (722)
Tree: 179 seconds: # of frequent itemsets for level 2 = 82
Vect: 192 seconds: # of frequent itemsets for level 2 = 82
Tree: 8 seconds: # of Generated candidates for level: 3 = 142 (62)
Vect: 7 seconds: # of Generated candidates for level: 3 = 142 (62)
Tree: 42 seconds: # of frequent itemsets for level 3 = 142
Vect: 49 seconds: # of frequent itemsets for level 3 = 142
Tree: 15 seconds: # of Generated candidates for level: 4 = 133 (50)
Vect: 16 seconds: # of Generated candidates for level: 4 = 133 (50)
Tree: 47 seconds: # of frequent itemsets for level 4 = 133
Vect: 55 seconds: # of frequent itemsets for level 4 = 133
Tree: 7 seconds: # of Generated candidates for level: 5 = 73 (24)
Vect: 10 seconds: # of Generated candidates for level: 5 = 73 (24)
Tree: 33 seconds: # of frequent itemsets for level 5 = 73
Vect: 39 seconds: # of frequent itemsets for level 5 = 73
Tree: 1 seconds: # of Generated candidates for level: 6 = 24 (7)
Vect: 1 second: # of Generated candidates for level: 6 = 24 (7)
Tree: 26 seconds: # of frequent itemsets for level 6 = 24
Vect: 22 seconds: # of frequent itemsets for level 6 = 24
Tree: 1 seconds: # of Generated candidates for level: 7 = 4 (1)
Vect: 1 second: # of Generated candidates for level: 7 = 4 (1)
Tree: 22 seconds: # of frequent itemsets for level 7 = 4
Vect: 20 seconds: # of frequent itemsets for level 7 = 4
Tree: 0 seconds: # of Generated candidates for level: 8 = 0 (0)
Vect: 0 second: # of Generated candidates for level: 8 = 0 (0)
Tree: time taken: 515 seconds
Vect: time taken: 545 seconds
|