FOIL 6.4 [January 1996]
--------
Relation Ackermann
Relation *succ
----------
Ackermann:
State (51/9261, 511.6 bits available)
Determinate literals
succ(A,D)
succ(B,D) ->succ(B,E)
succ(D,C) ->succ(F,C)
State (51/8000, 511.6 bits available)
Save D=1 (20,400 value 64.4)
Save B=F (20,400 value 64.4)
Save C=E (20,400 value 64.4)
Save succ(B,C) (20,400 value 64.4)
Best literal A=0 (6.6 bits)
State (20/400, 230.6 bits available)
Save clause ending with B=F (cover 20, accuracy 100%)
Save C=E (20,20 value 149.5)
Best literal B=F (6.9 bits)
Clause 0: Ackermann(A,B,C) :- A=0, succ(B,C).
State (31/9241, 339.8 bits available)
Determinate literals
succ(A,D)
succ(B,D) ->succ(B,E)
succ(D,A) ->succ(F,A)
succ(D,C) ->succ(G,C)
State (31/7600, 339.8 bits available)
Determinate literals
Ackermann(F,B,H)
Ackermann(F,E,H) ->Ackermann(F,E,I)
State (31/920, 339.8 bits available)
Determinate literals
succ(H,J)
succ(J,H) ->succ(K,H)
succ(J,I) ->succ(L,I)
State (31/920, 339.8 bits available)
Save G=L (22,46 value 157.1)
Save Ackermann(F,E,C) (22,46 value 157.1)
Save succ(G,I) (22,46 value 157.1)
Save succ(L,C) (22,46 value 157.1)
Best literal C=I (9.0 bits)
State (22/46, 247.4 bits available)
Save clause ending with A=1 (cover 19, accuracy 100%)
Save F=0 (19,19 value 155.3)
Save B=K (19,19 value 155.3)
Save E=G (19,19 value 155.3)
Save E=H (19,19 value 155.3)
Best literal A=1 (7.3 bits)
[Regrow clause] Ackermann(A,B,C) :- A=1.
State (19/441, 220.1 bits available)
Determinate literals
succ(B,D)
succ(D,C) ->succ(E,C) E=D (no new vars)
State (19/420, 220.1 bits available)
Best literal succ(D,C) (6.9 bits)
Clause 1: Ackermann(A,B,C) :- A=1, succ(B,D), succ(D,C).
State (12/9222, 156.7 bits available)
Determinate literals
succ(A,D)
succ(B,D) ->succ(B,E)
succ(C,D) ->succ(C,F)
succ(D,A) ->succ(G,A)
succ(D,C) ->succ(H,C)
State (12/7202, 156.7 bits available)
Determinate literals
Ackermann(G,B,I)
Ackermann(G,E,I) ->Ackermann(G,E,J)
State (12/856, 156.7 bits available)
Determinate literals
succ(I,K)
succ(J,K) ->succ(J,L)
succ(K,I) ->succ(M,I)
succ(K,J) ->succ(N,J)
State (12/818, 156.7 bits available)
Save F=L (3,26 value 20.1)
Save H=N (3,26 value 20.1)
Save Ackermann(G,E,C) (3,26 value 20.1)
Save succ(C,L) (3,26 value 20.1)
Best literal C=J (9.5 bits)
State (3/26, 45.6 bits available)
Save clause ending with B=0 (cover 3, accuracy 100%)
Save E=1 (3,3 value 28.4)
Best literal B=0 (7.5 bits)
[Regrow clause] Ackermann(A,B,C) :- B=0.
State (3/439, 47.7 bits available)
Determinate literals
succ(A,D)
succ(C,D) ->succ(C,E)
succ(D,A) ->succ(F,A)
succ(D,C) ->succ(G,C)
State (3/360, 47.7 bits available)
Determinate literals
Ackermann(B,D,H)
Ackermann(B,E,H) ->Ackermann(B,E,I)
Ackermann(F,B,H) ->Ackermann(F,B,J)
State (3/89, 47.7 bits available)
Determinate literals
Ackermann(B,H,K)
Ackermann(B,I,K) ->Ackermann(B,I,L)
Ackermann(B,J,K) ->Ackermann(B,J,M)
succ(H,K) ->succ(H,N) N=K (no new vars)
succ(I,K) ->succ(I,N) N=L (no new vars)
succ(J,K) ->succ(J,N) N=M (no new vars)
succ(K,J) ->succ(N,J)
State (3/84, 47.7 bits available)
Determinate literals
Ackermann(B,K,O)
Ackermann(B,L,O) ->Ackermann(B,L,P)
Ackermann(B,M,O) ->Ackermann(B,M,Q)
succ(K,O) ->succ(K,R) R=O (no new vars)
succ(L,O) ->succ(L,R) R=P (no new vars)
succ(M,O) ->succ(M,R) R=Q (no new vars)
State (3/79, 47.7 bits available)
Save Ackermann(F,J,P) (1,1 value 9.5)
Save Ackermann(F,C,K) (1,2 value 8.9)
Save Ackermann(F,F,I) (1,2 value 8.9)
Save Ackermann(F,N,I) (1,2 value 8.9)
Best literal Ackermann(F,A,P) (12.2 bits)
[Replace by saved clause]
Clause 2: Ackermann(A,B,C) :- B=0, succ(B,D), succ(E,A), Ackermann(E,D,C).
State (9/9219, 124.6 bits available)
Determinate literals
succ(A,D)
succ(B,D) ->succ(B,E)
succ(C,D) ->succ(C,F)
succ(D,A) ->succ(G,A)
succ(D,B) ->succ(H,B)
succ(D,C) ->succ(I,C)
State (9/6842, 124.6 bits available)
Determinate literals
Ackermann(A,H,J)
Ackermann(G,A,J) ->Ackermann(G,A,K)
Ackermann(G,B,J) ->Ackermann(G,B,L)
Ackermann(G,D,J) ->Ackermann(G,D,M)
Ackermann(G,E,J) ->Ackermann(G,E,N)
Ackermann(G,G,J) ->Ackermann(G,G,O)
Ackermann(G,H,J) ->Ackermann(G,H,P)
State (9/534, 124.6 bits available)
Save clause ending with Ackermann(G,J,C) (cover 9, accuracy 100%)
Best literal Ackermann(G,J,C) (11.0 bits)
Clause 3: Ackermann(A,B,C) :- succ(D,A), succ(E,B), Ackermann(A,E,F), Ackermann(D,F,C).
Delete clause
Ackermann(A,B,C) :- A=1, succ(B,D), succ(D,C).
Ackermann(0,B,C) :- succ(B,C).
Ackermann(A,0,C) :- succ(0,D), succ(E,A), Ackermann(E,D,C).
Ackermann(A,B,C) :- succ(D,A), succ(E,B), Ackermann(A,E,F), Ackermann(D,F,C).
Time 7.7 secs
|