|
Experiments
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6345332648088666 0.19369918816974963 age
Hidden Weights:
-0.07781517514554581 -0.4251916922156478
0.540449281417478 0.46420090890566756
>50K <=50K
Error sum for iteration 100 = 56.513502093680614
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6346751302897106 0.41193694070390086 age
Hidden Weights:
-0.07783911772066719 -0.4251689638924165
-0.6003525658123797 0.6654726708993642
>50K <=50K
Error sum for iteration 200 = 56.5113059412998
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.634814182681199 0.4473191540146173 age
Hidden Weights:
-0.07786112659103503 -0.42514695277344217
-0.5996014915249283 0.6647188768008655
>50K <=50K
Error sum for iteration 300 = 56.51055752669428
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6349528128077607 0.4682344123464627 age
Hidden Weights:
-0.07788307242634224 -0.42512500543709925
-0.599157493035763 0.6642739656775116
>50K <=50K
Error sum for iteration 400 = 56.51017925216285
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6350910514992237 0.4831590895595532 age
Hidden Weights:
-0.0779049597285495 -0.4251031169597055
-0.5988401449131501 0.6639561573259437
>50K <=50K
Error sum for iteration 500 = 56.50995066830963
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6352289102746236 0.4947807435544182 age
Hidden Weights:
-0.07792679018082518 -0.42508128551792934
-0.5985926158676961 0.6637083498192692
>50K <=50K
Error sum for iteration 600 = 56.50979747245249
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.63536639548737 0.5043042193954129 age
Hidden Weights:
-0.07794856471178652 -0.42505951011847154
-0.5983894667044216 0.6635050134987713
>50K <=50K
Error sum for iteration 700 = 56.50968758705165
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6355035114809121 0.5123750746537693 age
Hidden Weights:
-0.07797028395634052 -0.4250377900910079
-0.5982170696661259 0.6633324817071641
>50K <=50K
Error sum for iteration 800 = 56.509604886033216
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6356402616417167 0.5193799488944785 age
Hidden Weights:
-0.07799194840951963 -0.4250161249189629
-0.5980672603251975 0.6631825705014719
>50K <=50K
Error sum for iteration 900 = 56.509540371786386
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6357766488363717 0.525568907379613 age
Hidden Weights:
-0.07801355849036105 -0.4249945141691179
-0.5979347555432021 0.6630499858663529
>50K <=50K
Error sum for iteration 1000 = 56.509488626462456
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6359126756209362 0.5311130776185103 age
Hidden Weights:
-0.07803511457250595 -0.42497295745804414
-0.5978159377638275 0.6629311036992429
>50K <=50K
Error sum for iteration 1100 = 56.50944619185219
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.636048344351578 0.5361347529564362 age
Hidden Weights:
-0.07805661700037894 -0.4249514544342287
-0.5977082201510685 0.6628233329861838
>50K <=50K
Error sum for iteration 1200 = 56.50941075638143
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6361836572478508 0.5407243818345703 age
Hidden Weights:
-0.0780780660984521 -0.4249300047679081
-0.5976096882741754 0.6627247565033507
>50K <=50K
Error sum for iteration 1300 = 56.50938071598468
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6363186164311371 0.5449507538110454 age
Hidden Weights:
-0.07809946217686307 -0.42490860814487974
-0.5975188852340519 0.6626339154128524
>50K <=50K
Error sum for iteration 1400 = 56.509354922499135
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6364532239489995 0.5488674112256671 age
Hidden Weights:
-0.07812080553498316 -0.42488726426258555
-0.5974346763713312 0.6625496736669654
>50K <=50K
Error sum for iteration 1500 = 56.50933253234167
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6365874817914219 0.5525168500049005 age
Hidden Weights:
-0.07814209646377863 -0.4248659728275454
-0.5973561605963468 0.6624711291553836
>50K <=50K
Error sum for iteration 1600 = 56.509312911728934
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6367213919018401 0.5559333659255641 age
Hidden Weights:
-0.07816333524744257 -0.4248447335534961
-0.5972826102889719 0.6623975534907305
>50K <=50K
Error sum for iteration 1700 = 56.509295575231306
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.636854956184977 0.5591450389926379 age
Hidden Weights:
-0.07818452216453811 -0.4248235461601527
-0.5972134293819453 0.6623283500176839
>50K <=50K
Error sum for iteration 1800 = 56.509280144735925
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6369881765126024 0.5621751513983213 age
Hidden Weights:
-0.07820565748882835 -0.4248024103723215
-0.5971481233974262 0.6622630238000095
>50K <=50K
Error sum for iteration 1900 = 56.50926632132385
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6371210547275801 0.5650432226953362 age
Hidden Weights:
-0.07822674148988361 -0.424781325919247
-0.5970862775638839 0.6622011597035359
>50K <=50K
Error sum for iteration 2000 = 56.50925386555334
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6372535926471592 0.5677657798947405 age
Hidden Weights:
-0.07824777443354916 -0.42476029253406516
-0.5970275405303951 0.6621424060865989
>50K <=50K
Error sum for iteration 2100 = 56.509242583357604
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6373857920653793 0.5703569400109834 age
Hidden Weights:
-0.07826875658230874 -0.4247393099534077
-0.5969716120425542 0.6620864624590056
>50K <=50K
Error sum for iteration 2200 = 56.50923231577551
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6375176547549883 0.5728288573466859 age
Hidden Weights:
-0.07828968819556423 -0.42471837791711226
-0.5969182334764137 0.6620330700034667
>50K <=50K
Error sum for iteration 2300 = 56.50922293135037
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6376491824689762 0.5751920715482083 age
Hidden Weights:
-0.07831056952984804 -0.4246974961679957
-0.5968671804696828 0.661982004197669
>50K <=50K
Error sum for iteration 2400 = 56.50921432042439
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6377803769417809 0.5774557817379682 age
Hidden Weights:
-0.07833140083901236 -0.42467666445162
-0.5968182571159236 0.6619330690016044
>50K <=50K
Error sum for iteration 2500 = 56.509206390796166
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6379112398903569 0.5796280648046431 age
Hidden Weights:
-0.07835218237437548 -0.4246558825161713
-0.5967712913398551 0.661886092227539
>50K <=50K
Error sum for iteration 2600 = 56.509199064377675
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6380417730150233 0.5817160509727385 age
Hidden Weights:
-0.07837291438483926 -0.4246351501122725
-0.5967261311763918 0.6618409218150855
>50K <=50K
Error sum for iteration 2700 = 56.509192274591406
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6381719780000306 0.5837260663108197 age
Hidden Weights:
-0.07839359711700593 -0.42461446699288896
-0.5966826417493726 0.6617974228067703
>50K <=50K
Error sum for iteration 2800 = 56.509185964323216
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6383018565143457 0.5856637493811723 age
Hidden Weights:
-0.07841423081525374 -0.42459383291330016
-0.596640702797741 0.6617554748716951
>50K <=50K
Error sum for iteration 2900 = 56.50918008429717
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6384314102120262 0.5875341474663378 age
Hidden Weights:
-0.0784348157218135 -0.4245732476309589
-0.5966002066341503 0.6617149702622053
>50K <=50K
Error sum for iteration 3000 = 56.509174591774716
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.638560640732785 0.58934179652025 age
Hidden Weights:
-0.07845535207684226 -0.42455271090540847
-0.5965610564483395 0.6616758121156923
>50K <=50K
Error sum for iteration 3100 = 56.509169449504526
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6386895497023756 0.591090788040187 age
Hidden Weights:
-0.07847584011847021 -0.4245322224982644
-0.5965231648875988 0.6616379130337685
>50K <=50K
Error sum for iteration 3200 = 56.50916462486848
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6388181387328268 0.5927848253468606 age
Hidden Weights:
-0.0784962800828558 -0.424511782173095
-0.5964864528617746 0.6616011938862355
>50K <=50K
Error sum for iteration 3300 = 56.509160089182515
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6389464094228509 0.5944272712249152 age
Hidden Weights:
-0.0785166722042455 -0.42449138969544703
-0.5964508485313512 0.6615655827983312
>50K <=50K
Error sum for iteration 3400 = 56.50915581712028
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6390743633581961 0.596021188468345 age
Hidden Weights:
-0.07853701671498486 -0.4244710448327772
-0.5964162864460525 0.6615310142886487
>50K <=50K
Error sum for iteration 3500 = 56.509151786235876
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6392020021117936 0.5975693745627326 age
Hidden Weights:
-0.07855731384559195 -0.42445074735438754
-0.5963827068077928 0.6614974285314564
>50K <=50K
Error sum for iteration 3600 = 56.50914797656459
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6393293272440862 0.5990743914935596 age
Hidden Weights:
-0.07857756382476738 -0.42443049703140506
-0.5963500548370233 0.6614647707226066
>50K <=50K
Error sum for iteration 3700 = 56.50914437028989
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6394563403031057 0.6005385914803747 age
Hidden Weights:
-0.07859776687943469 -0.42441029363669797
-0.5963182802255279 0.6614329905319007
>50K <=50K
Error sum for iteration 3800 = 56.50914095146109
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6395830428248244 0.6019641392873487 age
Hidden Weights:
-0.07861792323476305 -0.42439013694496885
-0.5962873366619261 0.6614020416282879
>50K <=50K
Error sum for iteration 3900 = 56.509137705755535
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6397094363333375 0.6033530316430089 age
Hidden Weights:
-0.07863803311420887 -0.4243700267326524
-0.5962571814185607 0.6613718812663794
>50K <=50K
Error sum for iteration 4000 = 56.509134620275866
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6398355223409408 0.6047071142073037 age
Hidden Weights:
-0.07865809673953611 -0.4243499627778588
-0.5962277749903927 0.6613424699251798
>50K <=50K
Error sum for iteration 4100 = 56.50913168337659
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6399613023484282 0.6060280964488061 age
Hidden Weights:
-0.07867811433083188 -0.42432994486037323
-0.596199080778435 0.661313770991271
>50K <=50K
Error sum for iteration 4200 = 56.5091288845161
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6400867778451348 0.6073175647335588 age
Hidden Weights:
-0.0786980861065369 -0.42430997276163396
-0.596171064811003 0.6612857504799166
>50K <=50K
Error sum for iteration 4300 = 56.50912621412837
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6402119503091916 0.6085769938775437 age
Hidden Weights:
-0.0787180122834755 -0.42429004626470695
-0.5961436954977889 0.6612583767889139
>50K <=50K
Error sum for iteration 4400 = 56.509123663513066
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6403368212075714 0.6098077573744765 age
Hidden Weights:
-0.07873789307686277 -0.42427016515428023
-0.5961169434119953 0.6612316204806549
>50K <=50K
Error sum for iteration 4500 = 56.509121224739395
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.640461391996355 0.6110111364769135 age
Hidden Weights:
-0.07875772870033035 -0.42425032921663464
-0.5960907810968606 0.6612054540885204
>50K <=50K
Error sum for iteration 4600 = 56.50911889056245
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6405856641207962 0.6121883282818337 age
Hidden Weights:
-0.0787775193659532 -0.42423053823964313
-0.5960651828933764 0.6611798519444758
>50K <=50K
Error sum for iteration 4700 = 56.50911665435106
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6407096390154069 0.613340452948809 age
Hidden Weights:
-0.07879726528425603 -0.4242107920126849
-0.5960401247864545 0.6611547900251538
>50K <=50K
Error sum for iteration 4800 = 56.509114510024304
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6408333181041951 0.6144685601600859 age
Hidden Weights:
-0.07881696666424254 -0.42419109032665747
-0.5960155842671914 0.6611302458140655
>50K <=50K
Error sum for iteration 4900 = 56.50911245199475
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6409567028007003 0.6155736349163144 age
Hidden Weights:
-0.07883662371340479 -0.42417143297401166
-0.595991540209324 0.6611061981779575
>50K <=50K
Error sum for iteration 5000 = 56.50911047512011
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6410797945081967 0.6166566027480795 age
Hidden Weights:
-0.07885623663774222 -0.4241518197486705
-0.5959679727580481 0.6610826272556105
>50K <=50K
Error sum for iteration 5100 = 56.509108574659344
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6412025946196389 0.6177183344128105 age
Hidden Weights:
-0.07887580564178326 -0.4241322504460677
-0.5959448632298722 0.6610595143575736
>50K <=50K
Error sum for iteration 5200 = 56.5091067462344
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6413251045179461 0.6187596501366014 age
Hidden Weights:
-0.07889533092859868 -0.4241127248630697
-0.5959221940221004 0.6610368418756628
>50K <=50K
Error sum for iteration 5300 = 56.509104985795716
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6414473255760467 0.6197813234530447 age
Hidden Weights:
-0.07891481269981009 -0.42409324279797206
-0.5958999485309124 0.6610145932009684
>50K <=50K
Error sum for iteration 5400 = 56.50910328959265
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6415692591570291 0.6207840846841374 age
Hidden Weights:
-0.07893425115562326 -0.42407380405050576
-0.5958781110770796 0.6609927526495509
>50K <=50K
Error sum for iteration 5500 = 56.509101654145944
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6416909066142211 0.6217686241025944 age
Hidden Weights:
-0.07895364649481913 -0.42405440842185954
-0.5958566668384563 0.6609713053948738
>50K <=50K
Error sum for iteration 5600 = 56.50910007622331
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6418122692911975 0.6227355948099356 age
Hidden Weights:
-0.0789729989147939 -0.42403505571458644
-0.5958356017885275 0.6609502374063682
>50K <=50K
Error sum for iteration 5700 = 56.50909855281854
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6419333485220199 0.623685615360412 age
Hidden Weights:
-0.07899230861154527 -0.42401574573264517
-0.5958149026403897 0.660929535393327
>50K <=50K
Error sum for iteration 5800 = 56.50909708113168
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6420541456313336 0.6246192721573455 age
Hidden Weights:
-0.07901157577971765 -0.42399647828135384
-0.59579455679556 0.6609091867537162
>50K <=50K
Error sum for iteration 5900 = 56.50909565855143
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6421746619343424 0.6255371216451558 age
Hidden Weights:
-0.07903080061259556 -0.4239772531673432
-0.5957745522971674 0.6608891795273611
>50K <=50K
Error sum for iteration 6000 = 56.50909428264027
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6422948987369814 0.6264396923175396 age
Hidden Weights:
-0.07904998330211548 -0.4239580701986619
-0.5957548777870031 0.6608695023529775
>50K <=50K
Error sum for iteration 6100 = 56.50909295111889
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6424148573360591 0.6273274865602121 age
Hidden Weights:
-0.07906912403889232 -0.42393892918464027
-0.5957355224661963 0.6608501444288019
>50K <=50K
Error sum for iteration 6200 = 56.50909166185502
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6425345390192382 0.6282009823439513 age
Hidden Weights:
-0.07908822301222591 -0.4239198299359619
-0.5957164760590089 0.6608310954763775
>50K <=50K
Error sum for iteration 6300 = 56.509090412851094
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6426539450651848 0.6290606347827948 age
Hidden Weights:
-0.07910728041010778 -0.4239007722645905
-0.5956977287795053 0.6608123457072254
>50K <=50K
Error sum for iteration 6400 = 56.50908920223345
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6427730767436665 0.6299068775695403 age
Hidden Weights:
-0.0791262964192425 -0.42388175598377037
-0.5956792713009021 0.6607938857921867
>50K <=50K
Error sum for iteration 6500 = 56.50908802824315
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6428919353155474 0.6307401243004994 age
Hidden Weights:
-0.07914527122506221 -0.4238627809080786
-0.5956610947272145 0.660775706833019
>50K <=50K
Error sum for iteration 6600 = 56.50908688922776
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6430105220330895 0.6315607696991646 age
Hidden Weights:
-0.07916420501173312 -0.4238438468532761
-0.5956431905670844 0.6607578003362597
>50K <=50K
Error sum for iteration 6700 = 56.5090857836325
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6431288381398167 0.6323691907481879 age
Hidden Weights:
-0.07918309796217184 -0.4238249536364555
-0.5956255507096109 0.6607401581890086
>50K <=50K
Error sum for iteration 6800 = 56.5090847099941
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6432468848706576 0.6331657477376732 age
Hidden Weights:
-0.07920195025804262 -0.4238061010758897
-0.5956081674018614 0.6607227726364663
>50K <=50K
Error sum for iteration 6900 = 56.50908366693321
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6433646634520442 0.6339507852370824 age
Hidden Weights:
-0.0792207620797853 -0.42378728899112145
-0.5955910332281121 0.6607056362611465
>50K <=50K
Error sum for iteration 7000 = 56.50908265314928
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.643482175102075 0.6347246329975111 age
Hidden Weights:
-0.07923953360662882 -0.42376851720289854
-0.5955741410905486 0.6606887419635548
>50K <=50K
Error sum for iteration 7100 = 56.509081667414634
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6435994210304902 0.6354876067899737 age
Hidden Weights:
-0.07925826501659003 -0.4237497855331638
-0.5955574841913172 0.6606720829442392
>50K <=50K
Error sum for iteration 7200 = 56.50908070856923
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6437164024387634 0.6362400091853065 age
Hidden Weights:
-0.07927695648648712 -0.4237310938050754
-0.5955410560158013 0.6606556526871129
>50K <=50K
Error sum for iteration 7300 = 56.5090797755165
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6438331205201382 0.6369821302803863 age
Hidden Weights:
-0.07929560819196567 -0.4237124418429435
-0.5955248503171277 0.660639444943886
>50K <=50K
Error sum for iteration 7400 = 56.5090788672188
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.643949576459883 0.6377142483749841 age
Hidden Weights:
-0.07931422030749118 -0.42369382947233947
-0.595508861101626 0.6606234537195365
>50K <=50K
Error sum for iteration 7500 = 56.50907798269341
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6440657714350977 0.6384366306034209 age
Hidden Weights:
-0.07933279300636123 -0.42367525651987864
-0.5954930826153386 0.660607673258836
>50K <=50K
Error sum for iteration 7600 = 56.50907712100936
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6441817066149882 0.6391495335244177 age
Hidden Weights:
-0.07935132646073455 -0.4236567228134045
-0.5954775093313834 0.6605920980336903
>50K <=50K
Error sum for iteration 7700 = 56.50907628128358
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.644297383160937 0.6398532036725034 age
Hidden Weights:
-0.0793698208416197 -0.42363822818188934
-0.5954621359381016 0.6605767227313044
>50K <=50K
Error sum for iteration 7800 = 56.50907546267816
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6444128022264501 0.6405478780739052 age
Hidden Weights:
-0.07938827631888837 -0.42361977245544513
-0.5954469573280912 0.6605615422431645
>50K <=50K
Error sum for iteration 7900 = 56.50907466439729
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6445279649573786 0.6412337847297019 age
Hidden Weights:
-0.07940669306131161 -0.42360135546527355
-0.5954319685877455 0.6605465516546404
>50K <=50K
Error sum for iteration 8000 = 56.50907388568488
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6446428724917859 0.6419111430685581 age
Hidden Weights:
-0.07942507123653253 -0.4235829770437093
-0.5954171649876313 0.6605317462353091
>50K <=50K
Error sum for iteration 8100 = 56.50907312582201
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6447575259602154 0.642580164371585 age
Hidden Weights:
-0.07944341101109105 -0.42356463702417596
-0.5954025419733658 0.6605171214298522
>50K <=50K
Error sum for iteration 8200 = 56.50907238412459
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6448719264857022 0.6432410521710334 age
Hidden Weights:
-0.07946171255045013 -0.42354633524121854
-0.595388095157071 0.6605026728494878
>50K <=50K
Error sum for iteration 8300 = 56.509071659941256
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6449860751837841 0.6438940026249024 age
Hidden Weights:
-0.07947997601898713 -0.42352807153042543
-0.5953738203093288 0.6604883962639476
>50K <=50K
Error sum for iteration 8400 = 56.509070952651555
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6450999731626461 0.6445392048692611 age
Hidden Weights:
-0.07949820158000477 -0.4235098457284983
-0.5953597133516443 0.6604742875939136
>50K <=50K
Error sum for iteration 8500 = 56.509070261664306
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6452136215231221 0.6451768413496778 age
Hidden Weights:
-0.07951638939575309 -0.42349165767314556
-0.5953457703493468 0.6604603429039361
>50K <=50K
Error sum for iteration 8600 = 56.50906958641538
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6453270213587883 0.6458070881333201 age
Hidden Weights:
-0.07953453962741462 -0.4234735072032088
-0.5953319875048604 0.6604465583957012
>50K <=50K
Error sum for iteration 8700 = 56.50906892636651
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.645440173756012 0.6464301152031734 age
Hidden Weights:
-0.07955265243513884 -0.42345539415846967
-0.5953183611514359 0.6604329304017484
>50K <=50K
Error sum for iteration 8800 = 56.509068281003906
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6455530797940531 0.6470460867353296 age
Hidden Weights:
-0.07957072797803814 -0.42343731837981363
-0.5953048877471881 0.6604194553795014
>50K <=50K
Error sum for iteration 8900 = 56.509067649836794
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6456657405451331 0.6476551613606347 age
Hidden Weights:
-0.07958876641419749 -0.42341927970913973
-0.5952915638694665 0.660406129905668
>50K <=50K
Error sum for iteration 9000 = 56.5090670323957
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6457781570743348 0.6482574924119288 age
Hidden Weights:
-0.07960676790068816 -0.42340127798938454
-0.5952783862095864 0.6603929506709283
>50K <=50K
Error sum for iteration 9100 = 56.50906642823222
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6458903304399362 0.6488532281575514 age
Hidden Weights:
-0.0796247325935777 -0.4233833130644554
-0.5952653515677818 0.6603799144749306
>50K <=50K
Error sum for iteration 9200 = 56.50906583691702
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6460022616933218 0.6494425120221067 age
Hidden Weights:
-0.07964266064793156 -0.4233653847792617
-0.5952524568484948 0.6603670182215288
>50K <=50K
Error sum for iteration 9300 = 56.50906525803926
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.646113951879041 0.6500254827953242 age
Hidden Weights:
-0.07966055221782235 -0.42334749297970836
-0.5952396990558807 0.6603542589143389
>50K <=50K
Error sum for iteration 9400 = 56.50906469120535
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6462254020348339 0.6506022748297354 age
Hidden Weights:
-0.0796784074563453 -0.4233296375127058
-0.5952270752895665 0.6603416336524605
>50K <=50K
Error sum for iteration 9500 = 56.509064136038276
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6463366131917556 0.6511730182280804 age
Hidden Weights:
-0.07969622651561305 -0.4233118182261373
-0.5952145827406377 0.6603291396264713
>50K <=50K
Error sum for iteration 9600 = 56.50906359217684
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6464475863741969 0.6517378390207297 age
Hidden Weights:
-0.07971400954678895 -0.42329403496878876
-0.5952022186877982 0.6603167741146079
>50K <=50K
Error sum for iteration 9700 = 56.50906305927436
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6465583226000714 0.6522968593340495 age
Hidden Weights:
-0.0797317567000767 -0.4232762875904732
-0.5951899804938195 0.6603045344791463
>50K <=50K
Error sum for iteration 9800 = 56.50906253699831
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.646668822880635 0.6528501975501165 age
Hidden Weights:
-0.07974946812472058 -0.4232585759419144
-0.5951778656020511 0.6602924181629893
>50K <=50K
Error sum for iteration 9900 = 56.509062025029536
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6467790882206429 0.6533979684583469 age
Hidden Weights:
-0.07976714396903443 -0.42324089987483243
-0.5951658715331722 0.6602804226863951
>50K <=50K
Options: -I 10000
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 10000
-E 0.01
-S 1623907097
-H 2
-M 0.01
Input Weights:
-0.6468880204592897 0.6539348868997474 age
Hidden Weights:
-0.07978460815119777 -0.4232234354731941
-0.5951541140601907 0.6602686638357838
>50K <=50K
=== Error on training data ===
Correctly Classified Instances 387 77.4 %
Incorrectly Classified Instances 113 22.6 %
Mean absolute error 0.3803
Root mean squared error 0.4219
Relative absolute error 108.5157 %
Root relative squared error 100.8778 %
Total Number of Instances 500
=== Confusion Matrix ===
a b <-- classified as
0 113 | a = >50K
0 387 | b = <=50K
=== Error on test data ===
Correctly Classified Instances 385 76.8463 %
Incorrectly Classified Instances 116 23.1537 %
Mean absolute error 0.3827
Root mean squared error 0.4248
Relative absolute error 108.2723 %
Root relative squared error 100.6949 %
Total Number of Instances 501
=== Confusion Matrix ===
a b <-- classified as
0 116 | a = >50K
0 385 | b = <=50K
|
|
|