|
Experiments
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7533291356645115 0.35421395076985074 age
Hidden Weights:
0.022230836818651234 0.7390156300347646
0.7053387476131181 -0.6615930936277854
>50K <=50K
Error sum for iteration 100 = 56.53903077212294
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7534190389057981 0.2575225599433837 age
Hidden Weights:
-0.3985565572118925 1.2929288539669312
0.2962230214597048 -0.1194084404399498
>50K <=50K
Error sum for iteration 200 = 60.95798426437753
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7535056857848805 0.048953666731644474 age
Hidden Weights:
-0.496619941622068 1.429088741377744
0.6725940425318022 -0.5420051252831414
>50K <=50K
Error sum for iteration 300 = 62.61371157690109
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7535925210434736 0.054720417369823984 age
Hidden Weights:
-0.6266145995700053 1.581612169822905
0.9641114222961011 -0.8965485721591911
>50K <=50K
Error sum for iteration 400 = 63.45167591033083
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.753669929057377 0.0719980232344843 age
Hidden Weights:
-0.798073811890285 1.7625456213406083
1.3542841369412832 -1.3117000442253661
>50K <=50K
Error sum for iteration 500 = 63.557041247887916
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537292175231811 0.10337876323632655 age
Hidden Weights:
-0.9353556369449375 1.9060934530801588
1.6666530038425944 -1.6394886884011326
>50K <=50K
Error sum for iteration 600 = 63.204112865141816
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537698351681479 0.13600452354315717 age
Hidden Weights:
-1.0400164030546994 2.014706679502338
1.896127705704513 -1.8783977005359496
>50K <=50K
Error sum for iteration 700 = 62.75241597440773
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537962031368544 0.16143751797449113 age
Hidden Weights:
-1.1165484685064917 2.0937204927837247
2.059648195426434 -2.0476856794466016
>50K <=50K
Error sum for iteration 800 = 62.35513077654005
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538128609371851 0.1806538768913603 age
Hidden Weights:
-1.1710490016852213 2.149814321746707
2.174321510141606 -2.1659842503982314
>50K <=50K
Error sum for iteration 900 = 62.04594361722027
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538230533361986 0.1956004913654748 age
Hidden Weights:
-1.2091008570045803 2.188924252391391
2.253732817277411 -2.2477651710822424
>50K <=50K
Error sum for iteration 1000 = 61.80960834862369
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538288860908889 0.20759184870832675 age
Hidden Weights:
-1.2349275549343077 2.2154774911899824
2.307437203288044 -2.30307768098238
>50K <=50K
Error sum for iteration 1100 = 61.624539176192506
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538317121337477 0.2174662315983339 age
Hidden Weights:
-1.2515457867473805 2.2326093056823955
2.342018364802936 -2.33878567080124
>50K <=50K
Error sum for iteration 1200 = 61.47992790668731
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538324178167676 0.2257750115428935 age
Hidden Weights:
-1.261100614346627 2.242535938862261
2.362066295510347 -2.3596439768641133
>50K <=50K
Error sum for iteration 1300 = 61.36159955622029
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538316013817666 0.23289436435629293 age
Hidden Weights:
-1.2651355529143904 2.2468451852593714
2.370840649385934 -2.369013202324474
>50K <=50K
Error sum for iteration 1400 = 61.26218257706775
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538296802480198 0.23908967702761158 age
Hidden Weights:
-1.2647830389901837 2.2466980126506413
2.370708433062693 -2.3693245952563613
>50K <=50K
Error sum for iteration 1500 = 61.175196880508175
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538269556040128 0.24455393332525677 age
Hidden Weights:
-1.260894261085795 2.2429646070234015
2.363433292360967 -2.362384146458864
>50K <=50K
Error sum for iteration 1600 = 61.09737616356705
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538236519461415 0.249431374680329 age
Hidden Weights:
-1.254126722625608 2.2363155044434775
2.3503671325401227 -2.3495725690402
>50K <=50K
Error sum for iteration 1700 = 61.02659393059857
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538199418325724 0.2538325307514291 age
Hidden Weights:
-1.2450033657060364 2.2272828307585453
2.332577834009207 -2.331977901704399
>50K <=50K
Error sum for iteration 1800 = 60.962205511417906
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538159617408302 0.25784403149847285 age
Hidden Weights:
-1.2339527929180736 2.2163018172594344
2.3109352459363715 -2.310484457237654
>50K <=50K
Error sum for iteration 1900 = 60.90200200282511
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538118224301197 0.26153517095410217 age
Hidden Weights:
-1.2213368666601199 2.20373921416923
2.286169711350523 -2.285833189646402
>50K <=50K
Error sum for iteration 2000 = 60.84517089324903
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7538076158076493 0.26496239098906815 age
Hidden Weights:
-1.2074697245433914 2.189912831862069
2.2589121495528297 -2.258662956891336
>50K <=50K
Error sum for iteration 2100 = 60.7907882051913
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.753803419503265 0.26817239509735313 age
Hidden Weights:
-1.192630786194047 2.175104895177781
2.229721385020947 -2.229538624718454
>50K <=50K
Error sum for iteration 2200 = 60.73832614860447
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.753799299900727 0.2712043343730046 age
Hidden Weights:
-1.1770734009297787 2.1595709255033144
2.199102330867435 -2.1989697698666815
>50K <=50K
Error sum for iteration 2300 = 60.68747689715909
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537953141065331 0.27409134847535305 age
Hidden Weights:
-1.1610302182012557 2.143545272242177
2.1675173686544476 -2.167422415158094
>50K <=50K
Error sum for iteration 2400 = 60.63795707868188
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537915111833094 0.27686164850856637 age
Hidden Weights:
-1.1447160329567299 2.1272440707294145
2.1353925296654572 -2.1353254579490812
>50K <=50K
Error sum for iteration 2500 = 60.58956477941107
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537879328828837 0.2795392709777045 age
Hidden Weights:
-1.1283286865639994 2.1108662232553095
2.1031196924472706 -2.1030730427855184
>50K <=50K
Error sum for iteration 2600 = 60.54238959985477
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.753784614059852 0.2821445973748359 age
Hidden Weights:
-1.1120485343184956 2.0945929248015047
2.0710558426466807 -2.0710239479081296
>50K <=50K
Error sum for iteration 2700 = 60.496513635010544
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.75378158291164 0.28469471312705863 age
Hidden Weights:
-1.0960369779565036 2.078586239013044
2.039520398019784 -2.039499004284063
>50K <=50K
Error sum for iteration 2800 = 60.45153455397017
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537788611638837 0.28720366629335237 age
Hidden Weights:
-1.0804345665791042 2.0629872326187946
2.008791602386613 -2.0087775615992984
>50K <=50K
Error sum for iteration 2900 = 60.40739037934869
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537764642946871 0.28968267611226434 age
Hidden Weights:
-1.0653591580036816 2.047914163532341
1.9791029676814402 -1.9790939874995666
>50K <=50K
Error sum for iteration 3000 = 60.365635386690805
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537744018625757 0.2921403313785064 age
Hidden Weights:
-1.0509045802591737 2.0334611644268876
1.9506406423530176 -1.9506350829652308
>50K <=50K
Error sum for iteration 3100 = 60.32518192077082
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537726779720074 0.2945828072506052 age
Hidden Weights:
-1.0371401298505354 2.019697759670156
1.9235423851321523 -1.9235390956704972
>50K <=50K
Error sum for iteration 3200 = 60.28584019764647
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537712918801204 0.2970141164927591 age
Hidden Weights:
-1.0241110971580298 2.0066694066831214
1.897898538083525 -1.8978967268329237
>50K <=50K
Error sum for iteration 3300 = 60.24853695804398
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537702387201399 0.2994363985005641 age
Hidden Weights:
-1.011840342810747 1.9943990859105423
1.8737550651712256 -1.8737541985855501
>50K <=50K
Error sum for iteration 3400 = 60.21271170351512
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537695102980808 0.3018502384772717 age
Hidden Weights:
-1.0003307927829415 1.9828898073253196
1.8511184121490365 -1.851118138078078
>50K <=50K
Error sum for iteration 3500 = 60.17809028468649
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537690959098047 0.30425500139322326 age
Hidden Weights:
-0.9895686026748977 1.9721277840521778
1.829961707018531 -1.8299617978148974
>50K <=50K
Error sum for iteration 3600 = 60.1444084306225
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537689831256685 0.3066491617475767 age
Hidden Weights:
-0.9795266805285892 1.9620859626109612
1.8102316933441231 -1.81023200482384
>50K <=50K
Error sum for iteration 3700 = 60.11157740940308
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537691584989504 0.30903061058460957 age
Hidden Weights:
-0.9701682550238958 1.9527275968276934
1.7918557778547441 -1.7918562204960171
>50K <=50K
Error sum for iteration 3800 = 60.08030022130786
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537696081677947 0.3113969248028297 age
Hidden Weights:
-0.9614502211351171 1.9440095977420193
1.7747486587666998 -1.7747491780419486
>50K <=50K
Error sum for iteration 3900 = 60.05026016366303
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.753770318335523 0.3137455891812663 age
Hidden Weights:
-0.9533260696366369 1.935885466170454
1.758818145781584 -1.7588187090801273
>50K <=50K
Error sum for iteration 4000 = 60.02118506456295
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537712756284001 0.3160741673464201 age
Hidden Weights:
-0.9457482903016631 1.9283076980336047
1.7439699472170884 -1.7439705353697932
>50K <=50K
Error sum for iteration 4100 = 59.993053427488334
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537724673395414 0.31838042302106584 age
Hidden Weights:
-0.9386702151128793 1.9212296290039668
1.7301113517890736 -1.7301119537086445
>50K <=50K
Error sum for iteration 4200 = 59.96550193637039
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537738815757797 0.3206623966863952 age
Hidden Weights:
-0.9320473274313864 1.914606744616443
1.7171538520155258 -1.7171544613840204
>50K <=50K
Error sum for iteration 4300 = 59.93852107186694
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537755073261145 0.3229184450505906 age
Hidden Weights:
-0.9258381022576406 1.9083975211302386
1.7050148353944412 -1.705015448659994
>50K <=50K
Error sum for iteration 4400 = 59.91218745460702
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537773344717505 0.32514725158076574 age
Hidden Weights:
-0.9200044626330947 1.9025638823041788
1.6936185103640626 -1.6936191255537454
>50K <=50K
Error sum for iteration 4500 = 59.88646322961347
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537793537552623 0.32734781614122416 age
Hidden Weights:
-0.914511941775924 1.8970713617592918
1.6828962441336428 -1.6828968601627432
>50K <=50K
Error sum for iteration 4600 = 59.86179292846114
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537815567236504 0.32951943086465035 age
Hidden Weights:
-0.9093296345566136 1.8918890545895417
1.67278647832023 -1.6727870945975365
>50K <=50K
Error sum for iteration 4700 = 59.83813978503576
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537839356579394 0.33166164810939225 age
Hidden Weights:
-0.9044300099421752 1.8869894298844982
1.6632343649863846 -1.6632349811920055
>50K <=50K
Error sum for iteration 4800 = 59.81562412337946
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537864834968434 0.3337742449913389 age
Hidden Weights:
-0.8997886416720561 1.8823480614501642
1.6541912373612142 -1.6541918533230415
>50K <=50K
Error sum for iteration 4900 = 59.79396307543564
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537891937613598 0.3358571877011206 age
Hidden Weights:
-0.8953839001618124 1.8779433197381488
1.6456140012514129 -1.645614616877725
>50K <=50K
Options: -I 5000
Back Propagation Neural Network:
Numer Input Nodes: 1
Number Hidden Nodes: 2
Number Output Nodes: 2
-I 5000
-E 0.01
-S 1623718248
-H 2
-M 0.01
Input Weights:
0.7537920310605996 0.33789020909243733 age
Hidden Weights:
-0.8912374894537933 1.8737969088124629
1.6375439998195127 -1.6375446150661213
>50K <=50K
=== Error on training data ===
Correctly Classified Instances 387 77.4 %
Incorrectly Classified Instances 113 22.6 %
Mean absolute error 0.3643
Root mean squared error 0.4064
Relative absolute error 103.9638 %
Root relative squared error 97.173 %
Total Number of Instances 500
=== Confusion Matrix ===
a b <-- classified as
0 113 | a = >50K
0 387 | b = <=50K
=== Error on test data ===
Correctly Classified Instances 385 76.8463 %
Incorrectly Classified Instances 116 23.1537 %
Mean absolute error 0.3606
Root mean squared error 0.4066
Relative absolute error 102.0278 %
Root relative squared error 96.3881 %
Total Number of Instances 501
=== Confusion Matrix ===
a b <-- classified as
0 116 | a = >50K
0 385 | b = <=50K
|
|
|